首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8782篇
  免费   2074篇
  国内免费   1081篇
航空   7847篇
航天技术   1128篇
综合类   947篇
航天   2015篇
  2024年   65篇
  2023年   259篇
  2022年   373篇
  2021年   418篇
  2020年   385篇
  2019年   369篇
  2018年   246篇
  2017年   326篇
  2016年   393篇
  2015年   371篇
  2014年   513篇
  2013年   466篇
  2012年   568篇
  2011年   617篇
  2010年   564篇
  2009年   640篇
  2008年   594篇
  2007年   605篇
  2006年   458篇
  2005年   456篇
  2004年   419篇
  2003年   359篇
  2002年   346篇
  2001年   350篇
  2000年   236篇
  1999年   212篇
  1998年   233篇
  1997年   152篇
  1996年   170篇
  1995年   137篇
  1994年   137篇
  1993年   81篇
  1992年   98篇
  1991年   87篇
  1990年   60篇
  1989年   77篇
  1988年   50篇
  1987年   29篇
  1986年   9篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
螺旋桨飞机滑流非定常数值模拟研究   总被引:5,自引:0,他引:5  
采用非定常数值模拟方法,基于滑移网格技术,分析研究螺旋桨滑流对全机气动特性的干扰影响。用多块结构网格数值模拟软件,从搭接边界建立、搭接网格生成、流场插值传递3个方面对螺旋桨滑移搭接网格的数值模拟方法进行全面详细的介绍,并且阐述基于该技术的非定常数值模拟方法。在此基础上,开展螺旋桨飞机模型验证计算,分析研究螺旋桨滑流对全机流场和气动性能的影响,通过与风洞实验数据的对比分析,验证滑移搭接网格技术的可行性与准确性。研究结果表明,基于滑移搭接网格技术的螺旋桨滑流数值模拟,可以真实反映螺旋桨滑流流场特性,为螺旋桨类飞机的设计评估提供一种有效的数值模拟手段,在工程方面具有重要的实用价值。  相似文献   
962.
为了探究变冲角时压力面小翼对高亚声速扩压叶栅气动特性的影响,采用数值模拟软件ANSYS CFX对不同来流冲角下(0°,±3°,±6°)原型叶栅及加装了不同宽度压力面小翼的改型叶栅进行了数值计算。结果表明:不同冲角下压力面小翼都可以削弱泄漏涡的强度,改善叶顶间隙流动,降低叶栅流动损失。不同冲角时具有不同的最佳小翼方案,PW1.5方案在+6°冲角下性能提高最大,与同冲角下的原型叶栅相比,PW1.5方案的总压损失降低了14.4%。  相似文献   
963.
刘平安  王良  王璐 《推进技术》2018,39(2):317-325
为了更准确地预估含金属燃料固体火箭发动机的燃烧室压强,在压强计算中考虑两相流的影响,从一维两相喷管流动的求解出发,通过两相平衡流模型、两相常滞后模型、两相等温流模型、颗粒定温模型等模型的简化,分别推导不同模型下喷管中两相混合物的流量计算公式,再把流量公式应用到发动机零维内弹道理论中,推导并简化得到零维燃烧室平衡压强的计算公式。把压强公式用于HTPB推进剂固体火箭发动机和铝冰固体火箭发动机的燃烧室压强计算,结果表明,当固体推进剂中金属含量较高时(如铝含量为21%的HTPB推进剂发动机),用传统零维燃烧室压强公式预估的压强与实验误差较大,而使用合适的两相流模型和对应的零维燃烧室压强计算方法,在HTPB发动机中,能把压强预估结果与实验的误差降低到6%以内。如果使用多维内流场计算的方法,燃烧室压强预测结果的误差将下降到2.5%以内。结论发现在含金属固体火箭发动机的燃烧室压强计算中,考虑两相流的影响是必要的,而使用两相流修正后的零维燃烧室压强计算公式能够快速、较准确地预估这些发动机的燃烧室压强。  相似文献   
964.
固定几何气动矢量喷管气动性能数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
为掌握固定几何气动矢量喷管气动性能,通过CFD数值模拟的方法,研究了主流落压比、扩张段二次流落压比、扩张段二次流角度和引射对固定几何气动矢量喷管轴向推力系数的影响;主流落压比、扩张段二次流落压比和扩张段二次流角度对矢量角的影响;主流落压比、喉道二次流落压比和喉道二次流角度对喉道控制率的影响。结果表明:随主流落压比增大轴向推力系数增大,矢量角减小,喉道控制率减小;随扩张段二次流落压比增大推力系数减小,矢量角增大;随喉道二次流落压比增大,喉道控制率增大;随扩张段二次流角增大轴向推力系数减小,矢量角略有减小;随喉道二次流角增大喉道控制率增大;随引射方式增加喷管推力系数增大。  相似文献   
965.
为了详细分析单组元发动机催化床内部的流动与传热,针对颗粒无序分布的堆积床,提出了一种网格生成途径,适合于对大量颗粒自然堆积的管道流动进行数值模拟。根据该方法,对不同颗粒直径、不同进口速度的管道堆积床进行了液体介质的流动与非定常传热模拟,并与实验结果和Ergun方程计算进行了对比。结果表明,本文提出的方法可以有效模拟颗粒无序分布的堆积床内部流动与传热,适合于大量颗粒的堆积床仿真;网格尺度小于1/20颗粒直径时,模拟结果与实验结果符合很好;在相同雷诺数下,摩擦系数随颗粒直径增大而减小,Ergun方程在高雷诺数下计算的流阻偏大;非定常传热时,壁面效应会使壁面附近温度先接近流体温度。  相似文献   
966.
为研究复合固体推进剂损伤演化规律,基于分子动力学颗粒填充算法构建了HTPB(hydroxyl terminated polybutadiene)推进剂细观结构模型,通过在AP(ammonium perchlorate)颗粒/HTPB基体界面处引入黏接接触替代传统的黏接单元,并基于Hooke Jeeves的参数优化算法反演得到颗粒/基体界面处内聚力模型参数,利用双线性和自定义指数型损伤内聚力模型模拟了AP颗粒和HTPB基体黏接界面处损伤的萌生、发展、聚合直至宏观裂纹破坏的过程。通过数值仿真与实验结果对比发现,指数型损伤内聚力模型比双线性模型能更准确描述推进剂单轴拉伸过程中颗粒与HTPB基体界面间脱黏过程。最后对比了多阶段加载实验结果与仿真结果曲线,发现两者变化趋势基本一致,最大偏差仅为10%,验证了所建细观模型的可靠性及反演所得界面参数的准确性。   相似文献   
967.
基于CFD和CSM耦合的通用静气弹分析方法   总被引:1,自引:0,他引:1  
提出了一种适用于有限元精细化建模的流固耦合插值点选择方法,通过RBF(径向基函数)方法实现流固耦合面的数据交换,实现了基于CFD/CSM(computational fluid dynamics/computational structural mechanics)耦合的通用非线性静气弹分析方法。以HIRENASD(high Reynolds number aero-structural dynamics)风洞试验模型为验证对象,数值结果很好地与风洞试验结构变形、气动压力分布吻合,验证了所发展非线性CFD/CSM耦合静气弹求解器的精度。详细研究了HIRENASD模型在大迎角(AOA)流动下的静气动弹性特性,以及该模型弹性变形对机翼气动特性影响规律。研究表明:HIRENASD弹性模型变形后其升力小于刚性模型;在小迎角范围内刚性、弹性模型升力差随迎角增大呈线性增长;当迎角大于4°后,升力差先减小后基本保持不变,呈非线性关系。   相似文献   
968.
非轴对称端壁设计因能够有效地减少涡轮叶栅的二次流损失和提高气动性能而在高负荷涡轮设计中得到应用。简要回顾了涡轮叶栅二次流模型和非轴对称端壁造型方法,重点综述了非轴对称端壁设计的高负荷涡轮气动性能研究进展和抑制端壁二次流的作用机制,介绍了非轴对称端壁设计的高负荷涡轮端壁气热耦合作用的冷却特性研究进展,总结了高负荷涡轮非轴对称端壁设计技术的应用成果,展望了非轴对称端壁设计在高负荷涡轮的高效气动和冷却布局应用方面需要深入研究的内容。  相似文献   
969.
针对超声速喷管出口流场Ma和方向角的测量,设计了直径为4 mm的副孔正交型超声速5孔探针。圆锥形测压头半角为20°,测压孔直径为0.4 mm,探针直段长140 mm。分别在亚声速风洞(196个校准点)和超声速风洞(294个校准点)中对5孔探针进行了校准,结果表明:5孔探针在不同Ma下的方向特性曲线具有几何相似性,有较高的角度灵敏度;总压特性系数和静压特性系数均具有良好的对称性。并通过数值计算研究了5孔探针的扰流特性。结合自动位移机构,完成了超声速喷管出口5个截面共315个坐标点的标定,获得了流场的Ma和方向角分布特性。  相似文献   
970.
有效减小诱导阻力对于飞机降低油耗、提高航程具有重要意义。针对某飞机翼身组合体构型,采用CFD数值模拟方法分析融合式翼梢小翼对飞机气动力特性的影响,尤其是其减阻效应;并给出翼梢小翼附近的空间流场。结果表明:带翼梢小翼后翼尖涡强度减弱,飞机阻力系数明显下降;固定升力系数0.5时,弯矩增加3.2%,阻力系数减小4.2%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号