首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2753篇
  免费   368篇
  国内免费   221篇
航空   1351篇
航天技术   660篇
综合类   174篇
航天   1157篇
  2024年   20篇
  2023年   64篇
  2022年   107篇
  2021年   106篇
  2020年   116篇
  2019年   103篇
  2018年   75篇
  2017年   95篇
  2016年   114篇
  2015年   122篇
  2014年   128篇
  2013年   124篇
  2012年   124篇
  2011年   136篇
  2010年   117篇
  2009年   136篇
  2008年   152篇
  2007年   128篇
  2006年   144篇
  2005年   101篇
  2004年   117篇
  2003年   112篇
  2002年   70篇
  2001年   110篇
  2000年   78篇
  1999年   62篇
  1998年   89篇
  1997年   79篇
  1996年   64篇
  1995年   66篇
  1994年   54篇
  1993年   38篇
  1992年   55篇
  1991年   56篇
  1990年   28篇
  1989年   31篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有3342条查询结果,搜索用时 31 毫秒
981.
针对视觉导航系统对小型化、超分辨成像和近程立体视觉的需求,研究了一种基于微端面光纤面板的大视场紧凑型仿生复眼成像系统。利用视轴发散的微小型透镜组进行大视场成像,并以切削斜端面的光纤面板进行图像传输,将大面阵(5120×5120像素)CMOS相机与光纤面板后端面直接耦合实现图像输出,可实现9个视场部分重叠子孔径图像同步实时输出和采集。在实时化拼接处理中,利用CUDA并行加速方法进行图像拼接,单帧的拼接耗时小于30ms。视场部分重叠复眼成像模式还可配置偏振片或滤光片构成全偏振或多光谱成像,在天空偏振光导航、无人机紧急避障、弹载侦察、近程引信以及水下无人潜航器导航等领域具有广泛的应用前景。  相似文献   
982.
固体火箭冲压发动机流量可调燃气发生器控制算法   总被引:1,自引:0,他引:1  
固体火箭冲压发动机流量调节系统具有很强的时变性和非线性,在调节的初期存在流量负调现象,且推进剂不完全燃烧产生的颗粒容易附着于喉道,这些因素都将对调节性能产生消极影响。为处理上述问题,设计线性自抗扰控制器(LADRC)。仿真试验表明,所设计的LADRC对比于比例-积分-微分控制器(PID)具有更好的响应速度、精度、流量负调抑制能力以及抗干扰能力,在低压力和高压力两种工况下的响应时间均不超过1.5 s,超调量在1.5%以内;流量负调减小了3~4倍;对干扰的反应时间在0.4 s左右,干扰的偏离值仅为0.25 MPa,显著提高了燃气发生器的工作性能。  相似文献   
983.
航空发动机燃油雾化特性研究进展   总被引:1,自引:2,他引:1       下载免费PDF全文
严红  陈福振 《推进技术》2020,41(9):2038-2058
从实验、理论和数值模拟三个方面对航空发动机内的燃油雾化问题研究进展进行了综述。实验方面,通过雾化实验,可定性分析喷注参数及环境条件等因素对雾化效果的影响,测量技术是影响实验精度的关键;雾化理论对液膜形状及破碎特性的预测值与实验还存在一定误差,复杂气动条件下的雾化理论还较为缺乏;雾化数值模拟可以获得不同形式燃油雾化的某些典型变化过程,复杂多过程、多因素影响的雾化模拟还较难开展。总体上看,航空发动机燃油雾化机理还未能完全揭示。  相似文献   
984.
水下燃料电池推进技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
路骏  白超  高育科  高慧中  王俊光  李程  孙盼  郭兆元  宗潇 《推进技术》2020,41(11):2450-2464
水下燃料电池推进系统具有能量转换效率和比能量高、振动噪声低、无尾气排放等诸多优势,可大幅提高无人潜航器的航程、航深和隐蔽性等关键性能,是水下推进领域极具发展潜力的技术方向。本文介绍了水下燃料电池推进系统组成和工作原理,归纳了国内外在无人潜航器、氢氧燃料电池和高能氢氧源方面的研究进展,探讨了燃料电池推进技术未来的发展重点。在氢氧燃料电池方面,应重点解决纯氧供应和闭式循环带来的排水、腐蚀等问题。在高能氢氧源方面,能量密度较高的是铝水反应制氢、柴油重整制氢和高氯酸锂制氧,应予以重点关注。  相似文献   
985.
非线性光纤Sagnac干涉仪具有突破标准量子极限的优点,可实现超高精度地球自转角速度的测量。通过理论建模和数值仿真,阐明了非线性光纤Sagnac干涉仪的增益系数、光纤环长度、光纤环面积和激光波长等参量对干涉仪精度的影响。在测量地速的条件下,光纤环半径取0.5m,光纤环长度为20km且非线性增益系数大于3.582时,干涉仪灵敏度能够达到10-6(°)/h(量级),为实现高灵敏度非线性光纤Sagnac干涉仪提供了支撑。  相似文献   
986.
张浩  肖勇  杨朝旭  张睿  许斌 《航空学报》2020,41(z2):724271-724271
故障检验与隔离是利用联邦滤波实现组合导航系统安全可靠运行的关键技术。针对常规残差卡方检验法对于慢变故障检验效果差,以及状态卡方检验受到初值误差、系统噪声和建模误差影响导致子系统被频繁隔离的问题,提出一种改进的SINS/GPS/ADS/DVL组合导航系统故障检验算法。该算法采用2个状态推进器交替地对滤波数据进行重置,避免状态递推器被未检测出来的故障污染。实验结果表明,改进的算法能够有效提高故障检验的灵敏度,增强组合导航系统的可靠性。  相似文献   
987.
针栓喷注器中心推进剂偏转角模型分析研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张波涛  李平  王凯  陈宏玉 《推进技术》2021,42(7):1534-1543
为了实现针栓喷注器中心推进剂偏转角的准确预测,基于流场分析建立了中心推进剂偏转角理论模型。从动量守恒方程推导了中心推进剂偏转角公式,通过数值仿真和试验结果对其进行验证,并分析了工况参数和结构参数对中心推进剂偏转角的影响规律。结果表明:理论模型预测值与数值仿真和试验结果很好地吻合,套筒遮挡喷注面积对偏转角影响最大,在变推力时偏转角随着套筒遮挡喷注面积增加而减小。喷注压降、中心筒壁厚和底部凹腔深度对中心偏转角影响很小,当套筒遮挡喷注面积一定时,中心筒底部有凹腔的偏转角比没有凹腔的偏转角约大6°,该模型为针栓喷注器工程设计和进一步精确计算变推力下的雾化角提供了重要参考。  相似文献   
988.
谐振式光子晶体光纤陀螺是一种具有小型化、高精度等潜在技术优势的新型光纤陀螺,是国内外惯性器件研究的一个重要发展方向。针对谐振式光子晶体光纤陀螺的结构和信号检测原理进行了详细的叙述,确定了基于FPGA的陀螺信号检测总体方案,陀螺信号处理及控制模块主要由频差信号解调、复合拍频检测、闭环反馈控制、数据编码输出以及调制信号模块组成;随后重点介绍了窄线宽半导体激光器的驱动控制方案,在调制解调及频率偏差检测方案上采用数字相敏检波器实现频率偏差检测,在谐振频率闭环跟踪锁定方案上采用数字PI控制器实现环路光频率控制;最后进行了谐振式光子晶体光纤陀螺实验测试系统搭建,以及谐振曲线测试和谐振频率闭环锁定测试。  相似文献   
989.
对单轴旋转捷联惯导系统误差调制原理与旋转方案进行了研究,光纤陀螺作为惯性测量单元的主要传感器件,其误差主要包括常值漂移、标度因数误差、安装误差以及随机漂移误差,分析了单轴旋转调制对各项误差的补偿作用,给出了单轴单向连续旋转、两位置正反转停(大于360°)、四位置正反转停(小于360°)3种转动方案。在摇摆状态下综合考虑各项误差,并对其中的两种转位方案进行了长时间导航仿真,仿真结果表明:两位置转停方案与四位置转停方案长时间导航定位精度相当,四位置转停方案不需要加装导电滑环,实现起来更加简单,是一种最为有效的单轴旋转方式。在自行研制的单轴旋转捷联惯导系统上对四位置转停旋转方式进行了转台摇摆和车载环境验证实验,结果都能满足系统设计的指标。  相似文献   
990.
靳雨树  徐旭  朱韶华  项亮 《推进技术》2018,39(11):2438-2445
为了进一步提高变推力火箭发动机推力调节水平、拓宽推进剂使用范围、提升调节控制的技术能力,采用理论计算和地面试验的方法,设计了一款基于机械定位双调系统的气氧/煤油变推力火箭发动机,对变推力发动机的性能、针栓式喷注器的性能和机械定位双调系统的调节效果进行了研究。结果表明:气氧/煤油变推力火箭发动机在0.26~4.35MPa室压实现稳定燃烧,推力变化为57.30~864.70N,推力变化比达到15:1,最高燃烧效率达到97.14%;流量调节阀可精确调节推进剂流量,针栓式喷注器可主动控制喷注压降,达到机械定位双调系统的预期目标,展现出采用机械定位双调系统的该型变推力火箭发动机在深度变推力技术应用的优势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号