首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2407篇
  免费   403篇
  国内免费   329篇
航空   1472篇
航天技术   743篇
综合类   310篇
航天   614篇
  2024年   18篇
  2023年   71篇
  2022年   104篇
  2021年   101篇
  2020年   105篇
  2019年   106篇
  2018年   80篇
  2017年   67篇
  2016年   92篇
  2015年   86篇
  2014年   125篇
  2013年   140篇
  2012年   140篇
  2011年   188篇
  2010年   148篇
  2009年   157篇
  2008年   155篇
  2007年   170篇
  2006年   176篇
  2005年   159篇
  2004年   125篇
  2003年   127篇
  2002年   98篇
  2001年   101篇
  2000年   56篇
  1999年   51篇
  1998年   60篇
  1997年   33篇
  1996年   17篇
  1995年   11篇
  1994年   16篇
  1993年   15篇
  1992年   10篇
  1991年   15篇
  1990年   7篇
  1989年   8篇
  1988年   1篇
排序方式: 共有3139条查询结果,搜索用时 630 毫秒
1.
2.
3.
4.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   
5.
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28?ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6?cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5?cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8?cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7?cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.  相似文献   
6.
《中国航空学报》2020,33(2):634-663
The determination of optimal aerial transport networks and their associated flight frequencies is crucial for the strategic planning of airlines, as well as for carrying out market research, to establish target markets, and for aircraft and crew rostering. In addition, optimum airplane types for the selected networks are crucial to improve revenue and to provide reduced operating costs. The present study proposes an innovative approach to determine the optimal aerial transport network simultaneously with the determination of the optimum fleet for that network, composed of three types of airplanes (network and vehicle integrated design). The network profit is maximized. The passenger’s demands between the airports are determined via a gravitational model. An embedded linear programming solution is responsible for obtaining potential optimal network configurations. The optimum fleet combination is determined from a database of candidate aircraft designs via genetic algorithm. A truly realistic airplane representation is made possible thanks to accurate surrogate models for engine and aerodynamics is adopted. An accurate engine deck encompassing a compression map and an innovative engine weight calculation besides an aerodynamical artificial neural network module enable a high degree of accuracy for the mission analysis. The proposed methodology is applied to obtain the optimum network comprised of twenty main Brazilian airports and corresponding fleet.  相似文献   
7.
面向学生的智能解题专家系统的研究与设计   总被引:3,自引:0,他引:3  
探讨了网络在专家系统中的应用 ,给出了一个基于网络的面向学生的智能解题专家系统的模型 ,分析了设计的基本过程。从专家系统出发 ,探讨了基于知识的推理系统。最后 ,从以上设计出发 ,总结了基于该模型的系统需进一步研究的工作。  相似文献   
8.
有线电视网络安全监控系统   总被引:1,自引:1,他引:0  
在有线电视台前端采用数字信标插入器在视频插入标志,在有线电视网中对此标志进行检查,即可判断有线网络中播出的信号是否合法,若不符合设定,则通过电话网络向前端发出报警信号,前端收到报警信号后,向值班人员发出声光报警,从而达到对有线电视网络进行实时监控的目的。较详细地说明了该系统及各主要部分的原理及具体实现。  相似文献   
9.
新一代民用客机自主式数据总线   总被引:1,自引:0,他引:1  
本文在简要阐述 ARINC 429 和 MIL-STD-1553B 总线应用所受限制的基础上,介绍了90年代美国民航界推出的一种自主式数据总线 ARINc629的设计要点,包括其通信协议。各终端信源数据在总线上的周期传输和非周期传输、信息传输的种类和方法及终端的功能框图,最后给出了此总线在新一代民用机中的应用情况。  相似文献   
10.
The computation of high-accuracy orbits is a prerequisite for the success of Low Earth Orbiter (LEO) missions such as CHAMP, GRACE and GOCE. The mission objectives of these satellites cannot be reached without computing orbits with an accuracy at the few cm level. Such a level of accuracy might be achieved with the techniques of reduced-dynamic and kinematic precise orbit determination (POD) assuming continuous Satellite-to-Satellite Tracking (SST) by the Global Positioning System (GPS). Both techniques have reached a high level of maturity and have been successfully applied to missions in the past, for example to TOPEX/POSEIDON (T/P), leading to (sub-)decimeter orbit accuracy. New LEO gravity missions are (to be) equipped with advanced GPS receivers promising to provide very high quality SST observations thereby opening the possibility for computing cm-level accuracy orbits. The computation of orbits at this accuracy level does not only require high-quality GPS receivers, but also advanced and demanding observation preprocessing and correction algorithms. Moreover, sophisticated parameter estimation schemes need to be adapted and extended to allow the computation of such orbits. Finally, reliable methods need to be employed for assessing the orbit quality and providing feedback to the different processing steps in the orbit computation process. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号