首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   30篇
  国内免费   14篇
航空   109篇
航天技术   178篇
综合类   14篇
航天   15篇
  2023年   7篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   12篇
  2018年   8篇
  2017年   9篇
  2016年   4篇
  2015年   6篇
  2014年   23篇
  2013年   17篇
  2012年   23篇
  2011年   32篇
  2010年   24篇
  2009年   17篇
  2008年   19篇
  2007年   12篇
  2006年   8篇
  2005年   41篇
  2004年   4篇
  2003年   9篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
排序方式: 共有316条查询结果,搜索用时 203 毫秒
61.
The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1–14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft.  相似文献   
62.
基于模糊数学的民机机载气象雷达故障诊断   总被引:1,自引:0,他引:1  
将模糊数学方法引入到民机机载气象雷达故障诊断中.提出由历史数据及专家择优综合确定模糊隶属度的方法,建立了模糊故障诊断模型,准确、快速地找出故障原因,实践证明该模型合理有效。  相似文献   
63.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   
64.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   
65.
论述了对“航空气象”课进行教学改革的必要性,根据“航空气象”课教学中存在的问题,就教学内容、教学方法和教学手段等方面提出了改革的建议。  相似文献   
66.
Intense geomagnetic storms (Dst < −100 nT) usually occur when a large interplanetary duskward-electric field (with Ey > 5 mV m−1) lasts for more than 3 h. In this article, a self-organizing map (SOM) neural network is used to recognize different patterns in the temporal variation of hourly averaged Ey data and to predict intense storms. The input parameters of SOM are the hourly averaged Ey data over 3 h. The output layer of the SOM has a total of 400 neurons. The hourly Ey data are calculated from solar wind data, which are provided by NSSDC OMNIWeb and ACE spacecraft and contain information on 143 intense storms and a fair number of moderate storms, weak storms and quiet periods between September 3, 1966 and June 30, 2002. Our results show that SOM is able to classify solar wind structures and therefore to give timely intense storm alarms. In our SOM, 21 neurons out of 400 are identified to be closely associated with the intense storms and they successfully predict 134 intense storms out of the 143 ones selected. In particular, there are 14 neurons for which, if one or more of them are present, the occurrence probability of intense storms is about 90%. In addition, several of these 14 neurons can predict big magnetic storm (Dst  −180 nT). In summary, our method achieves high accuracy in predicting intense geomagnetic storms and could be applied in space environment prediction.  相似文献   
67.
气象海洋卫星地面遥感站主要是用于接收各类气象、海洋、环境卫星的遥感原始数据,并实现数据存储及相关数据处理,从中提取可用的空间环境资料。5.2m天线根据轨道预报捕获并跟踪目标,接收L/S/X三频段射频信号,将信号放大变频后送解调器,解调器从中频信号中恢复出原始遥感数据帧,由记录器对数据进行存储,快视设备实时对原始数据进行去格式处理后显示遥感图像,通过网络传输给各个用户。  相似文献   
68.
The L5 point is a promising location for forecasting co-rotating high-speed streams in the solar wind arriving at the Earth. We correlated the solar wind data obtained by the Nozomi spacecraft in interplanetary space and by the Advanced Composition Explorer (ACE) at the L1 point, and found that the correlation is significantly improved from that of the 27-day recurrence of ACE data. Based on the correlation between the two spacecraft observations, we estimated the correlation of the solar wind velocity between the L5 point and at the Earth, and found that the correlation coefficient was about 0.78 in late 1999, while that of the 27-day recurrence was 0.51. Eighty-eight percent of the velocity difference falls within 100 km/s between the L5 point and the Earth. This demonstrates the potential capability of solar wind monitoring at the L5 point to forecast the geomagnetic disturbances 4.5 days in advance.  相似文献   
69.
针对雾霾天气对舰载机目视着舰安全性的影响难以量化的问题,利用激光雷达在近海的能见度观测数据,反演海上雾霾天气下飞行员目视着舰的斜程能见度的状况,提出 1种基于能见度指标的目视着舰风险评估方法,将舰载机着舰过程中飞行员频繁的目测压力,转变为舰上数据测量、风险评估和应对措施等程序化工作,将定性的安全分析转变为定量的风险评估和安全指导,谋求在现有着舰控制模式下有效降低飞行员着舰压力,提升指挥引导效率,为低能见度下舰载机目视着舰训练提供理论依据和实践指导。  相似文献   
70.
The stability of GPS time and frequency transfer is limited by the fact that GPS signals travel through the ionosphere. In high precision geodetic time transfer (i.e. based on precise modeling of code and carrier phase GPS data), the so-called ionosphere-free combination of the code and carrier phase measurements made on the two frequencies is used to remove the first-order ionospheric effect. In this paper, we investigate the impact of residual second- and third-order ionospheric effects on geodetic time transfer solutions i.e. remote atomic clock comparisons based on GPS measurements, using the ATOMIUM software developed at the Royal Observatory of Belgium (ROB). The impact of third-order ionospheric effects was shown to be negligible, while for second-order effects, the tests performed on different time links and at different epochs show a small impact of the order of some picoseconds, on a quiet day, and up to more than 10 picoseconds in case of high ionospheric activity. The geomagnetic storm of the 30th October 2003 is used to illustrate how space weather products are relevant to understand perturbations in geodetic time and frequency transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号