首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   27篇
  国内免费   117篇
航空   183篇
航天技术   60篇
综合类   12篇
航天   59篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   22篇
  2020年   21篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   9篇
  2015年   17篇
  2014年   22篇
  2013年   18篇
  2012年   8篇
  2011年   19篇
  2010年   19篇
  2009年   12篇
  2008年   9篇
  2007年   7篇
  2006年   15篇
  2005年   7篇
  2004年   9篇
  2003年   9篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1989年   3篇
  1988年   2篇
  1985年   2篇
排序方式: 共有314条查询结果,搜索用时 531 毫秒
51.
在无人机(UAVs)编队自组织网络中,针对无人机之间位置信息更新周期不合理,从而导致编队控制不稳定和控制开销过大的问题,提出一种基于无人机编队控制的自适应HELLO更新算法。该算法应用编队控制稳定性理论推导出无人机组成期望编队的控制延时上限,结合该延时上限和编队运动状态自适应地设定HELLO更新周期。仿真结果表明,本文提出的算法与固定HELLO更新周期算法相比,既能保证在组编控制过程的稳定性,又能实时维护稳定阶段的链路,并且显著减少网络中不必要的控制开销。   相似文献   
52.
尾座式无人飞行器鲁棒容错编队控制   总被引:1,自引:1,他引:0  
刘德元  刘昊  Frank L LEWIS 《航空学报》2021,42(2):324296-324296
针对尾座式无人飞行器编队在执行器故障、严重的非线性和耦合性、参数不确定性、外界扰动等影响下的容错控制问题进行了研究。提出了一种鲁棒容错编队控制方法来实现一群尾座式无人飞行器在执行器故障情况下的期望编队飞行。所构建的控制器由2部分组成:标称控制器和干扰补偿控制器。设计标称控制器使系统实现期望的控制性能,利用干扰补偿控制器抑制多种不确定性和执行器故障的影响。通过理论分析证明了系统的鲁棒稳定性,并通过数值仿真验证了算法的有效性。  相似文献   
53.
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.  相似文献   
54.
多飞行器协调航迹规划方法   总被引:8,自引:3,他引:8  
针对多飞行器的协调航迹规划展开研究,提出了一种基于协同进化的多飞行器协调航迹规划算法。在该算法中,不同飞行器的潜在航迹形成它们自己的子种群,并在于种群内部进化。不同飞行器间的协调关系由航迹的评价函数来实现。同时,通过使用特定的染色体表示方法和进化算子,该算法可以有效利用各种环境信息,处理各种航迹约束,并实时地生成三维航迹。  相似文献   
55.
Tian YAN  Yuanli CAI  Bin XU 《中国航空学报》2020,33(12):3423-3436
In practical combat scenario, the cooperative intercept strategies are often carefully designed, and it is challenging for the hypersonic vehicles to achieve successful evasion. Based on the analysis, it can be found that if several Successive Pursuers come from the Same Direction(SPSD) and flight with a proper spacing, the evasion difficulty may increase greatly. To address this problem, we focus on the evasion guidance strategy design for the Air-breathing Hypersonic Vehicles(AHVs) under the S...  相似文献   
56.
The paper describes the basic definition and application of 'Cost Engineering' which means to design a vehicle system for minimum development cost and/or for minimum operations cost. This is important now and for the future since space transportation has become primarily a commercial business in contrast to the past where it has been mainly a subject of military power and national prestige. Several examples are presented for minimum-cost space launch vehicle configurations, such as increasing vehicle size and/or the use of less efficient rocket engines in order to reduce development and operations cost. Further a cost comparison is presented on single-stage (SSTO)-vehicles vs. two-stage launchers which shows that SSTOs have lower development and operations cost although they are larger, respectively have a higher lift-off mass than two-stage vehicles with the same performance. The design of a space tourism-dedicated launch vehicle is an extreme challenge for a cost-engineered vehicle design in order to achieve cost per seat not higher than $50,000. Finally an outlook is presented on the different options for manned Earth-to-Moon transportation modes and vehicles – another most important application of 'cost engineering', taking into account the large cost of such a future venture.  相似文献   
57.
This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS) under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP) allocator to generate torque com-manded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effective-ness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP) techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.  相似文献   
58.
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.  相似文献   
59.
Purpose of the present study is to provide algorithms for and examples of how to simulate star visibility and tracking by a Telescope attached to the main truss of the International Space Station (ISS).  相似文献   
60.
Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of on-line monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to the implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号