首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5306篇
  免费   1017篇
  国内免费   1003篇
航空   4111篇
航天技术   1550篇
综合类   624篇
航天   1041篇
  2024年   51篇
  2023年   148篇
  2022年   192篇
  2021年   308篇
  2020年   341篇
  2019年   440篇
  2018年   554篇
  2017年   447篇
  2016年   411篇
  2015年   350篇
  2014年   262篇
  2013年   280篇
  2012年   405篇
  2011年   447篇
  2010年   290篇
  2009年   287篇
  2008年   342篇
  2007年   313篇
  2006年   320篇
  2005年   221篇
  2004年   183篇
  2003年   117篇
  2002年   88篇
  2001年   89篇
  2000年   57篇
  1999年   47篇
  1998年   56篇
  1997年   49篇
  1996年   45篇
  1995年   52篇
  1994年   65篇
  1993年   15篇
  1992年   17篇
  1991年   9篇
  1990年   8篇
  1989年   9篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有7326条查询结果,搜索用时 140 毫秒
991.
《中国航空学报》2020,33(4):1154-1165
This paper focuses on the effects of external geometrical modifications on the aerodynamic characteristics of the MQ-1 predator Unmanned Combat Aerial Vehicle (UCAV) using computational fluid dynamics. The investigations are performed for 16 flight conditions at an altitude of 7.6 km and at a constant speed of 56.32 m/s. Two models are analysed, namely the baseline model and the model with external geometrical modifications installed on it. Both the models are investigated for various angles of attack from −4° to 16°, angles of bank from 0° to 6° and angles of yaw from 0° to 4°. Due to the unavailability of any experimental (wind tunnel or flight test) data for this UCAV in the literature, a thorough verification of calculations process is presented to demonstrate confidence level in the numerical simulations. The analysis quantifies the loss of lift and increase in drag for the modified version of the MQ-1 predator UCAV along with the identification of stall conditions. Local improvement (in drag) of up to 96% has been obtained by relocating external modifications, whereas global drag force reduction of roughly 0.5% is observed. The effects of external geometrical modifications on the control surfaces indicate the blanking phenomenon and reduction in forces on the control surfaces that can reduce the aerodynamic performance of the UCAV.  相似文献   
992.
The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.  相似文献   
993.
针对UTM体制中无人机在地理围栏内的飞行监视问题,提出一种约束状态相关模态转换混合估计算法(CSDTHE)。采用随机线性混杂系统模型对无人机运动状态进行建模,利用CV、CT和CA三种模态描述无人机的飞行状态,以构建地理围栏内无人机运行的通用模态转换模型框架。利用飞行模态改变点(FMCP)定义相关模态转换参数,设计模态转换条件,生成模态转换概率矩阵,从而建立与状态相关的模态转换模型。运用约束卡尔曼滤波(CKF)方法对直线阶段和转弯阶段的无人机运动速度分别施加等式约束,并通过仿真实验验证了CSDTHE算法对无人机跟踪的有效性。  相似文献   
994.
This article studies the cooperative search-attack mission problem with dynamic targets and threats, and presents a Distributed Intelligent Self-Organized Mission Planning (DISOMP) algorithm for multiple Unmanned Aerial Vehicles (multi-UAV). The DISOMP algorithm can be divided into four modules: a search module designed based on the distributed Ant Colony Optimization (ACO) algorithm, an attack module designed based on the Parallel Approach (PA) scheme, a threat avoidance module designed based on the Dubins Curve (DC) and a communication module designed for information exchange among the multi-UAV system and the dynamic environment. A series of simulations of multi-UAV searching and attacking the moving targets are carried out, in which the search-attack mission completeness, execution efficiency and system suitability of the DISOMP algorithm are analyzed. The simulation results exhibit that the DISOMP algorithm based on online distributed down-top strategy is characterized by good flexibility, scalability and adaptability, in the dynamic targets searching and attacking problem.  相似文献   
995.
This paper proposes a novel algorithm for Two-Dimensional (2D) central Direction-of-Arrival (DOA) estimation of incoherently distributed sources. In particular, an orthogonal array structure consisting of two Non-uniform Linear Arrays (NLAs) is considered. Based on first-order Taylor series approximation, the Generalized Array Manifold (GAM) model can first be established to separate the central DOAs from the original array manifold. Then, the Hadamard rotational invariance relationships inside the GAMs of two NLAs are identified. With the aid of such relationships, the central elevation and azimuth DOAs can be estimated through a search-free polynomial rooting method. Additionally, a simple parameter pairing of the estimated 2D angular parameters is also accomplished via the Hadamard rotational invariance relationship inside the GAM of the whole array. A secondary but important result is a derivation of closed-form expressions of the Cramer-Rao lower bound. The simulation results show that the proposed algorithm can achieve a remarkably higher precision at less complexity increment compared with the existing low-complexity methods, which benefits from the larger array aperture of the NLAs. Moreover, it requires no priori information about the angular distributed function.  相似文献   
996.
丁君生  陈俊平  王君刚 《宇航学报》2020,41(9):1195-1203
针对目前基于GNSS观测数据的对流层天顶总延迟(ZTD)模型缺乏有效质量控制手段的现状,提出了一套综合考虑数据量、网格分辨率以及模型稳定性的ZTD建模质量控制方法,并采用内华达大地测量实验室(NGL)解算的高空间分辨率GNSS对流层数据,选取了近十年德国及周边区域[47°N-55°N,5°E-15°E]183个测站的实测ZTD,对该方法进行了校验。实验结果表明:在该质量控制方法下建立的新模型精度稳定,平均均方根误差(RMS)为3.4 cm,相对于UNB3m、EGNOS、GPT2w+Saas平均改善了42.4%、35.8%、33.3%。本文提出的质量控制方法有效提升了基于GNSS观测数据的ZTD模型的性能,对于ZTD建模研究具有一定的参考价值。  相似文献   
997.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   
998.
When a wave shaper is embedded in a liner,Mach wave will emerge above the liner,which affects the head shape of an explosively formed projectile.Mach wave parameters,including radius and pressure need to be determined to effectively match Mach wave with the liner,so that a good head shape can be obtained.An analytical calculation model for Mach wave parameter is presented based on three-shock theory,and the theoretical values agree well with the experimental ones.The analysis shows that when the radius of the wave shaper is constant,the radius of the Mach wave increases,whereas the pressure decreases while increasing the distance between the liner and the wave shaper.When the distance between the liner and the wave shaper is constant,the radius of the Mach wave increases,whereas the pressure decreases when decreasing the radius of the wave shaper.  相似文献   
999.
视觉传感器在无人机室内定位中发挥着重要作用。传统基于特征点的视觉里程计算法通过底层亮度关系进行描述匹配,抗干扰能力不足,会出现匹配错误甚至失败的情况,导航系统的精度及鲁棒性有待提升。由于室内环境存在丰富的语义信息,提出了一种基于语义信息辅助的无人机视觉/惯性融合定位方法。首先,将室内语义信息进行因子建模,并与传统的视觉里程计方法进行融合;然后,基于惯性预积分方法,在因子图优化中添加惯性约束,以进一步提高无人机在动态复杂环境下的定位精度和鲁棒性;最后,通过无人机室内飞行试验对算法的定位精度进行了分析。试验结果表明,相较于传统的视觉里程计算法,该方法具有更高的精度和鲁棒性。  相似文献   
1000.
《中国航空学报》2023,36(3):220-240
Blade-health monitoring is intensely required for turbomachinery because of the high failure risk of rotating blades. Blade-Tip Timing (BTT) is considered as the most promising technique for operational blade-vibration monitoring, which obtains the parameters that characterize the blade condition from recorded signals. However, its application is hindered by severe undersampling and stringent probe layouts. An inappropriate probe layout can make most of the existing methods invalid or inaccurate. Additionally, a general conflict arises between the allowed and required layouts because of arrangement restrictions. For the sake of economy and safety, parameter identification based on fewer probes has been preferred by users. In this work, a spatial-transformation-based method for parameter identification is proposed based on a single-probe BTT measurement. To present the general Sampling-Aliasing Frequency (SAFE) map definition, the traditional time–frequency analysis methods are extended to a time-sampling frequency. Then, a SAFE map is projected onto a parameter space using spatial transformation to extract the slope and intercept parameters, which can be physically interpreted as an engine order and a natural frequency using coordinate transformation. Finally, the effectiveness and robustness of the proposed method are verified by simulations and experiments under uniformly and nonuniformly variable speed conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号