全文获取类型
收费全文 | 368篇 |
免费 | 162篇 |
国内免费 | 125篇 |
专业分类
航空 | 312篇 |
航天技术 | 116篇 |
综合类 | 91篇 |
航天 | 136篇 |
出版年
2024年 | 13篇 |
2023年 | 49篇 |
2022年 | 81篇 |
2021年 | 93篇 |
2020年 | 62篇 |
2019年 | 50篇 |
2018年 | 23篇 |
2017年 | 22篇 |
2016年 | 16篇 |
2015年 | 15篇 |
2014年 | 19篇 |
2013年 | 21篇 |
2012年 | 25篇 |
2011年 | 27篇 |
2010年 | 16篇 |
2009年 | 15篇 |
2008年 | 11篇 |
2007年 | 19篇 |
2006年 | 20篇 |
2005年 | 6篇 |
2004年 | 9篇 |
2003年 | 5篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 8篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有655条查询结果,搜索用时 15 毫秒
171.
Mohammadtaghi Avand Hamidreza Moradi Mehdi Ramazanzadeh lasboyee 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(10):3169-3186
The main objective of this study was to produce flood susceptibility maps for Tajan watershed, Sari, Iran using three machine learning (ML) models including Self-Organization Map (SOM), Radial Basis Function Neural Network (RBFNN), and Multi-layers Perceptron (MLP). To reach such a goal, different physical-geographical factors (criteria) were integrated and mapped. 212 flood inventory map was randomly divided into training and testing datasets, where 148 flood locations (70%) were used for training and the remaining 64 locations (30%) were employed for testing. Model validation was performed using several statistical indices and the area under the curve (AUC). The results of the correlation matrix showed, three factors slope (0.277), distance from river (0.263), and altitude (0.223) were the most important factors affecting flood. The accuracy evaluation of the flood susceptibility maps through the AUC method and K-index shows that in the validation phase RBFNN (AUC = 0.90) outperform the MLP (AUC = 0.839) and SOM (AUC = 0.882) models. The highest percentage flood susceptibility of the area in MLP, SOM and RBFNN models is related to moderate (28.7%), very low (40%) and low (37%), respectively. Also, the validation results of the models using the Relative Flood Density (RFD) approach showed that very high class had the highest RFD value. 相似文献
172.
强化学习是一种有效的机器学习方法,是无监督学习,通过不断地和环境交互得到外部环境评价信号,选择合适的动作。Q学习是一种典型的强化学习,其学习效率较低,尤其是当状态空间和决策空间较大时。为提高Q学习学习效率和收敛速度,采用具有先验知识的Q学习算法,利用模糊综合决策方法处理专家经验和环境信息得到Q学习的先验知识,对Q学习的初始状态进行优化;针对Agent个体学习与群体学习各自的不足,提出了采用混合学习算法,将个体学习与群体学习有效结合起来,提高了Agent的个体性能及系统整体的智能水平;同时为满足复杂适应性需求,采用Agent混合结构模型,在该模型中构造了基于知识的协调控制器,通过它来协调慎思式过程和反应式过程。 相似文献
173.
为了解决无人机自主空战中的机动决策问题,提出了一种将优化思想与机器学习相结合的机动决策模型。采用多目标优化方法作为决策模型核心,既解决了传统优化方法需要为多个优化目标设置权重的困难,又提高了决策模型的可拓展性;同时在多目标优化的基础上通过强化学习方法训练评价网络进行辅助决策,解决了决策模型在对抗时博弈性不足的缺点。为了测试决策模型的性能,以近距空战为背景,设计了3组仿真实验分别验证多目标优化方法的可行性、辅助决策网络的有效性以及决策模型的总体性能,仿真结果表明,决策模型可以对有机动的敌机进行有效的实时机动对抗。 相似文献
174.
面向火箭结构健康监测,提出了一种基于深度学习的损伤检测方法,直接将多个通道的振动数据作为输入,并基于由长短时记忆网络LSTM(Long Short-Term Memory Networks)和残差卷积神经网络ResNet(Residual Convolutional Neural Networks)组合而成的LSTM-ResNet网络进行损伤识别。其优点在于,首先利用LSTM提取信号的时间依赖特征,减轻了由某些通道信号缺失带来的影响,再利用ResNet在不损耗特征的情况下进一步提取空间特征,提高了训练效率和损伤辨识准确性。通过充液圆筒振动放水实验模拟火箭飞行状态下的燃料消耗,并基于自主构建的数据集和公用数据集对LSTM-ResNet、LSTM、ResNet以及ResNet-LSTM网络进行了训练,训练结果表明,LSTM-ResNet组合网络无论在传感器是否存在故障的情况下都具有更好的性能,损伤检测精度更高。 相似文献
175.
自《大学英语课程教学要求(试行)》颁布以来,国内众多高校在构建学生自主模式等方面进行了一系列的改革探索。在新的时代要求下,自主学习能力的培养变得越来越重要。本文对学校中试行的2+2+X的大学英语教学模式中存在的问题进行分析,并就现阶段如何培养和提高我国大学生英语学习的自主性提出了几点对策。 相似文献
176.
李梁 《华北航天工业学院学报》2009,(4):50-53
每一种语言的形成和发展都与其社会环境密切相连,语言同时反映出一个国家和民族的历史和文化。从这个层面上说,教授语言同时也是在教授文化,学习语言的同时也是在学习文化。一个科学的语言教学体系,必须将文化教学紧密融入到语言的教学当中。鉴于当前的高校二外日语教学中鲜有独立开设日本文化课的情况,将日本文化融入到二外日语教学的始终,将会有效帮助学生在有限的学习时间里取得良好的学习效果。本文针对现阶段高校二外日语教学的特点,探讨了在日本文化背景下进行二外日语教学的重要性,并提出了一些文化导入的内容与方法。 相似文献
177.
Webshell是一种基于Web的网站后门程序。当前已有的Webshell检测方法都需要根据脚本程序源代码来检测,因此只能部署在服务器主机上,而且只能检测本机的网站代码。本文通过分析Webshell的HTML页面特征,提出了一种基于支持向量机(Support vector machine,SVM)分类算法的黑盒检测方法。该方法是一种有监督的机器学习系统,对先验网页的HTML页面进行学习,可以在未知脚本源代码的情况下对Webshell进行检测。实现结果表明,该方法在黑盒的条件下达到了较高的准确率和极低的误报率,并且取得了与白盒检测方法相近的检出率,可以部署在基于网络的入侵检测系统中,同时监测多台服务器是否包含Webshell,从而帮助监控入侵趋势和网络安全态势。 相似文献
178.
179.
一种可用于航空发动机健康状态预测的动态集成极端学习机模型 总被引:1,自引:0,他引:1
提出一种动态集成极端学习机模型用于航空发动机健康状态预测.采用AdaBoost.RT集成学习算法对极端学习机(ELM)进行集成,在训练时采用每个训练样本的近邻样本对ELM的局域性能进行评估;在预测时首先确定新样本在训练样本集中的近邻样本,然后根据ELM在近邻样本上的性能来赋予集成权值实现弱学习机的动态集成.以燃油流量为指标进行航空发动机健康状态预测,动态集成ELM模型短期预测结果的平均相对误差绝对值(MAPE)为3.688%,小于单一ELM模型的3.830%以及静态集成ELM模型的3.719%;长期预测结果中动态集成ELM模型的MAPE为3.075%,小于单一ELM模型的4.355%以及静态集成ELM模型的3.884%.因此动态集成ELM模型更适用于航空发动机健康状态预测. 相似文献
180.