首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   13篇
  国内免费   37篇
航空   156篇
航天技术   17篇
综合类   27篇
航天   12篇
  2024年   1篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   10篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   12篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   9篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
91.
方刚毅  邢菲  赵梦梦 《推进技术》2021,42(6):1293-1302
实施贫预混燃烧技术的关键是保证燃料与氧化剂的均匀混合,避免在燃烧时形成局部高温点而导致NOx排放增加。本文针对弱旋流燃烧器设计了甲烷/空气预混方案,首先通过试验结果验证了数值计算方法的可靠性,然后对当量比为0.7的预混气体进行数值模拟,分析了燃料喷射孔和弱旋流流场特性对掺混的影响机制。结果表明:喷射孔径影响燃料的初始分布,很大程度上决定了在有限空间内可以达到的最终混合效果,对给出的预混结构,存在最佳当量孔径b=0.01及对应的平均动量通量比 J =75.59,使混合效果最优。弱旋流流场由中心直流通量和外环旋流通量共同作用,其中旋流对燃料扩散起主导作用。在保证弱旋流特性的前提下,通过增大孔板阻塞比或旋流叶片几何角的方式能够强化旋流作用,从而提高预混均匀性。  相似文献   
92.
采用Reynolds应力方程模型及涡耗散燃烧模型,在不同旋转工况下给定相同进气流量,对侧向进气固冲发动机补燃室湍流反应流场进行了数值计算,得到了燃烧产物的平衡组分、燃烧温度和其他热力学参数,并在此基础上计算了补燃室燃烧效率、发动机推力等参数。数值模拟表明,对于侧向进气固体火箭冲压发动机,在空气射流中引入旋转流动,能有效提高补燃室内的燃烧效率,进一步提高发动机性能。燃烧效率随旋流强度呈先增大、后又减小的规律。采用最佳旋流数的旋转进气后,可使发动机推力提高约2.3%。  相似文献   
93.
用谱方法对三维不可压槽道湍流反应流动进行了直接数值模拟,得到了温度和质量分数耦合的瞬态数据库.结果显示温度与质量分数脉动在近壁区都有条带结构.推导了雷诺平均方法中湍流二阶矩反应模型中所求关联量的精确输运方程,发现耗散项是化学反应率系数-质量分数关联量封闭的关键,耗散项需要考虑化学反应影响.基于数据库的统计结果,对关联量模型方程中各项进行了先验研究,发现产生项和耗散项的贡献最大,扩散项和反应项的贡献较小,化学反应对各项大小和分布形状有明显影响.在算例中,直接模拟统计得到的化学反应率系数-质量分数关联和用代数二阶矩模型的模拟值很接近,说明ASOM模型具有一定的合理性.   相似文献   
94.
本文介绍一种二元跨声速激波-边界层强干扰的计算方法。边界层计算采用湍流边界层积分反方法,它借助Whitfield和Swafford提供的既适合附着流,也适合分离流的速度剖面表达式。跨声速无粘流用全速势方程模拟。通过边界上排溢速度来考虑粘性的影响,用有粘/无粘迭代得到粘性流解。本方法计算的结果与其它方法以及实验的结果进行了比较,证明该方法可以在工程上推广使用。  相似文献   
95.
本文用改进的多重线涡模型计算大迎角低速旋转体的对称和非对称涡流。通过给定物面上对称或非对称的分离线位置,现在提出的算法有效地解决了涡强度与自由涡线位置的迭代匹配问题,首次得到了迎角大到60度的涡流数值解。对一个切拱头体计算出的气动力特性与实验结果相符。  相似文献   
96.
一种强螺旋流现场的数值试验研究   总被引:1,自引:0,他引:1  
螺旋流一般通过切向进流、安装导流片或旋转管道三种方式产生,但Horii等人通过实验发现有三种装置也产生了非常稳定的螺旋流。本文利用数值模拟对其中的一种螺旋流形成过程与机制进行了研究,计算结果证实了双涡结构向单涡结构演化现象并揭示了收缩管道的优点以及不同倾向进流的区别。在数值模拟时本文分别选取了线性、二及三阶涡粘性涡流模式,但数值实验表明线性与二阶模式的计算结果差别不大,说晨在数值模拟湍流螺旋流时二阶涡粘性模式作用不大。而三阶模式则表现出具有预测对称性进流向非对称结构转化的能力。  相似文献   
97.
水下固体火箭发动机尾流场计算   总被引:3,自引:0,他引:3  
采用了二维定常气流场模型和轴对称理想水流场模型,对水下工作固体火箭发动机尾流场进行了耦合数值求解。考虑了高温燃气与水介质之间传热、汽化等对内部气体流动的影响,数值模拟了尾流场中压强、温度在发动机尾流场中沿轴向、径向的分布规律和特征及参数变动对喷管性能的影响,所获得的流场压强、温度分布规律可为水下工作固体发动机设计提供依据。  相似文献   
98.
Improvement of Baldwin-Lomax turbulence model for supersonic complex flows   总被引:1,自引:0,他引:1  
Entropy represents the dissipation rate of energy. Through direct numerical simulation (DNS) of supersonic compression ramp flow, we find the value of entropy is monotonously decreasing along the wall-normal direction no matter in the attached or the separated region. Based on this feature, a new version of Baldwin-Lomax turbulence model (BL-entropy) is proposed in this paper. The supersonic compression ramp and cavity-ramp flows in which the original Baldwin-Lomax model fails to get convergent solutions are chosen to evaluate the performance of this model. Results from one-equation Spalart-Allmaras model (SA) and two-equation Wilcox k-x model are also included to compare with available experimental and DNS data. It is shown that BLentropy could conquer the essential deficiency of the original version by providing a more physically meaningful length scale in the complex flows. Moreover, this method is simple, computationally efficient and general, making it applicable to other models related with the supersonic boundary layer.  相似文献   
99.
In previous publications (Keppens et al.: 2002, Astrophys. J. 569, L121; Goedbloed et al.: 2004a, Phys. Plasmas 11, 28), we have demonstrated that stationary rotation of magnetized plasma about a compact central object permits an enormous number of different MHD instabilities, with the well-known magneto-rotational instability (Velikhov, E. P.: 1959, Soviet Phys.–JETP Lett. 36, 995; Chandrasekhar, S.: 1960, Proc. Natl. Acad. Sci. U.S.A. 46, 253; Balbus, S. A. and Hawley, J. F.: 1991, Astrophys. J. 376, 214) as just one of them. We here concentrate on the new instabilities found that are driven by transonic transitions of the poloidal flow. A particularly promising class of instabilities, from the point of view of MHD turbulence in accretion disks, is the class of trans-slow Alfv’en continuum modes, that occur when the poloidal flow exceeds a critical value of the slow magnetosonic speed. When this happens, virtually every magnetic/flow surface of the disk becomes unstable with respect to highly localized modes of the continuous spectrum. The mode structures rotate, in turn, about the rotating disk. These structures lock and become explosively unstable when the mass of the central object is increased beyond a certain critical value. Their growth rates then become huge, of the order of the Alfv’en transit time. These instabilities appear to have all requisite properties to facilitate accretion flows across magnetic surfaces and jet formation.  相似文献   
100.
Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号