首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   45篇
  国内免费   96篇
航空   422篇
航天技术   38篇
综合类   81篇
航天   34篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   13篇
  2020年   12篇
  2019年   17篇
  2018年   15篇
  2017年   22篇
  2016年   22篇
  2015年   32篇
  2014年   30篇
  2013年   29篇
  2012年   33篇
  2011年   37篇
  2010年   25篇
  2009年   31篇
  2008年   20篇
  2007年   32篇
  2006年   15篇
  2005年   23篇
  2004年   18篇
  2003年   15篇
  2002年   11篇
  2001年   7篇
  2000年   11篇
  1999年   10篇
  1998年   4篇
  1997年   11篇
  1996年   10篇
  1995年   15篇
  1994年   15篇
  1993年   8篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1986年   1篇
排序方式: 共有575条查询结果,搜索用时 46 毫秒
571.
超声速燃烧室等离子体点火实验研究   总被引:40,自引:0,他引:40  
针对超燃冲压发动机在较低飞行M数(M0≤4)下的起动点火问题,利用氢氧燃烧加热脉冲风洞,在超声速燃烧室进口M数M=2、总温T0=960K条件下,分别采用等离子体点火器+先锋氢燃料和大功率等离子体点火器,探索了在超声速燃烧室中,实现煤油点火和稳定燃烧的方法.采用等离子体点火、凹槽火焰稳定器和从壁面喷射燃料方式,实现了煤油的可靠点火和稳定燃烧.研究表明,在燃烧室进口M=2、总温T0=960K时,采用大功率等离子体点火器,不需要先锋燃料,可以直接点燃煤油.  相似文献   
572.
超燃冲压发动机燃烧效率测量方法简介   总被引:10,自引:2,他引:8  
在进行超燃冲压发动机燃烧室性能评估时,燃烧效率是一个非常重要的指标.然而由于燃烧室内高温、高速等复杂条件的影响,很难对燃烧效率进行直接的确定.对常见的气体采样法、红外线法、体积热量法、推力测量法和冲量函数法等基于试验测量的超燃冲压发动机燃烧效率确定方法进行了详细介绍,并对各自的特点进行了对比分析,供进行燃烧效率测量试验参考.  相似文献   
573.
超声速气膜冷却数值模拟   总被引:9,自引:4,他引:5  
应用SST k-ω湍流模型,对三维粘性掺混流场进行了数值模拟,得到了切向入射的超声速气膜在不同吹风比和冷却通道下的绝热温比分布.计算结果表明:吹风比是决定超声速气膜冷却效果的重要因素,吹风比增大,冷却效果随之提高;冷却通道不同,冷却效率的分布规律也不同,矩形孔在出口处存在冷却效果较低的区域;离散孔冷却通道在下游和冷却通道中间线上的冷却效果存在明显差异,侧向倾角的引入使这种差异消失;扩散孔和侧向倾角两种结构上游冷却效果好,但下游衰减更快;引入的评价参数可以为比较不同的气膜冷却方式提供参考.   相似文献   
574.
为了研究喉部面积比、喉部位置及稠度对超声速叶栅最小损失点性能的影响,基于直接控制通道的造型方法获得一系列设计马赫数为1.4且具有不同通道参数的平面叶栅。数值计算与流场分析结果表明:根据叶栅通道内激波系结构的不同可将其划分为启动态叶栅与过渡态叶栅。喉部参数主要通过改变激波系位置影响叶栅性能。启动态叶栅喉部面积比越小、喉部位置越靠前,其最小损失越小、静压比越高;过渡态叶栅则相反。稠度改变时叶栅通道中激波系结构发生变化,大稠度叶栅大多处于启动态,最小损失小且静压比高;小稠度叶栅大多处于过渡态,具有更大的裕度。  相似文献   
575.
随着高超声速飞行器不断朝着高马赫、宽速域方向发展,推进系统面临低动压的工作条件,对燃烧室内的流动掺混带来巨大挑战。针对碳氢燃料超燃冲压发动机燃烧室,本文研究了碳氢燃料预加热对超声速剪切掺混特性的影响机制,分析了温度与碳氢燃料热裂解对掺混特性的影响规律。研究发现,当碳氢燃料未发生热裂解反应时,燃料预加热会使射流黏性耗散增强从而掺混效率降低,燃料温度从750 K增加到900 K时,燃烧室掺混效率降低约5%、总压损失约增加20%;但燃料热裂解反应对剪切掺混有双重影响,裂解后的碳氢燃料膨胀性能提升,使喷嘴附近的掺混效率提高约18%;由于剪切层内流体湍动能下降,在远离喷嘴的位置掺混效率降低约6%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号