全文获取类型
收费全文 | 740篇 |
免费 | 75篇 |
国内免费 | 410篇 |
专业分类
航空 | 186篇 |
航天技术 | 294篇 |
综合类 | 33篇 |
航天 | 712篇 |
出版年
2024年 | 5篇 |
2023年 | 11篇 |
2022年 | 24篇 |
2021年 | 46篇 |
2020年 | 36篇 |
2019年 | 44篇 |
2018年 | 44篇 |
2017年 | 39篇 |
2016年 | 56篇 |
2015年 | 62篇 |
2014年 | 111篇 |
2013年 | 75篇 |
2012年 | 87篇 |
2011年 | 101篇 |
2010年 | 73篇 |
2009年 | 66篇 |
2008年 | 80篇 |
2007年 | 40篇 |
2006年 | 26篇 |
2005年 | 38篇 |
2004年 | 21篇 |
2003年 | 15篇 |
2002年 | 15篇 |
2001年 | 8篇 |
2000年 | 12篇 |
1999年 | 15篇 |
1998年 | 15篇 |
1997年 | 7篇 |
1996年 | 7篇 |
1995年 | 9篇 |
1994年 | 13篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 4篇 |
1989年 | 3篇 |
1988年 | 3篇 |
排序方式: 共有1225条查询结果,搜索用时 0 毫秒
31.
32.
载人航天器空气环境参数控制非定常仿真分析 总被引:2,自引:0,他引:2
为支持乘员在轨驻留,载人航天器需通过空气环境控制系统将众多设计参数和空气环境参数控制在指标范围内。文章建立了一种载人航天器空气环境非定常控制仿真分析模型,包括舱体模块、航天员模块、舱压控制模块、温湿度控制模块以及CO2净化模块。利用该模型分析了载人航天器空气环境参数随乘员代谢水平的非定常变化趋势,并评估了控制系统的工作性能。结果表明:乘员代谢水平变化对空气环境参数有显著影响,通过调节控制系统运行参数可将各空气参数控制在有效指标范围内。人区温度与O2分压、CO2分压和人区湿度有密切的影响关系,不可孤立地进行分析。为载人航天器空气环境参数控制系统的设计和流程改进提供了依据。 相似文献
33.
34.
文章建立微重力环境下载人航天器密封舱简化物理模型,利用FDS软件仿真分析火源在密封舱中心位置时不同送风角度(θ=0°、θ=45°、θ=60°)下舱内温度和烟气浓度的分布规律。分析结果显示:需要在大功率设备上方两侧布置火灾探测器;不同送风角度下的速度场不同,造成舱内温度分布规律也不同;当送风角度θ=45°、θ=60°时,密封舱内的烟气与θ=0°时相比更易排出。分析结果可为载人航天器密封舱内送风口及火灾探测器的设置提供参考。 相似文献
35.
应力腐蚀(SCC)是一种易引起航天飞行器结构无征兆事故的多因素耦合作用失效类型。为厘清SCC机理,文章从基因角度解析SCC的应力因子和微观因素,探索SCC基因测取方法和无SCC事故内涵。分析表明,SCC应力基因位于远低于σS的量值区间,其微观基因包括溶解阳极、氢、电负性离子、滑移位错、钝化膜和晶体取向,可采用多尺寸断裂形貌、化学浓度、电位/电流、应力/应变等参数测取SCC基因组态和SCC敏感性。基于SCC基因分析,航天飞行器结构设计寿命内无SCC事故原则应包括合理设计、精准评价和正确失效分析三部分。 相似文献
36.
37.
薄膜太阳帆(FSS)是集推进、发电和姿轨控功能于一体化的超大型挠性太阳帆式航天器,通过调整薄膜反射率产生可变推力和力矩,实现其姿态和轨道运动控制。结合薄膜太阳帆在地球同步轨道运行时的受力特性进行了轨道漂移分析。通过建立薄膜太阳帆动力学模型及受力模型,提出了调整帆面角度轨道修正方法以及基于薄膜光压力矩角动量卸载的长期在轨对日定向面内双轴动量轮稳定控制方法。通过系统仿真验证表明所提的轨道修正和对日定向控制方法是合理有效的,可使薄膜太阳帆长期在定点位置维持对日定向。 相似文献
38.
39.
污染控制体系的完善,控制技术的成熟,对航天器研制至关重要,本文简要说明了污染控制的重要性,以及由于污染造成航天器失效的例子,比较详细地介绍了航天器项目各阶段污染控制的一些方法,最后简要介绍了污染领域的发展方向和急需解决的问题. 相似文献
40.
Irina V. Chernyakina 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(9):2844-2854
Ballistic design of solar sailing missions in the solar system is composed of defining the design parameters, the control programs, and the trajectories that provide performance goals of a flight. The use of a solar sail spacecraft imposes specific restrictions on mission parameters that include the degradation limit on the flight duration, the maximum temperature of solar sail's surface, the minimum distance from the Sun, the maximum angular velocity of the spacecraft's rotation and others.Many authors considered the impact of these restrictions on the design of the mission separately, but they used a sophisticated method of finding the exact optimal motion control or applied the most straightforward laws of motion control. This paper uses local-optimal control laws at the complete mathematical models of motion and functioning of solar sail spacecraft to describe a technique of designing interplanetary missions. The described method avoids the need to obtain an accurate optimal solution to the control problem and does not cause significant computational difficulties. 相似文献