首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362篇
  免费   519篇
  国内免费   662篇
航空   1435篇
航天技术   682篇
综合类   229篇
航天   1197篇
  2024年   24篇
  2023年   84篇
  2022年   124篇
  2021年   165篇
  2020年   129篇
  2019年   158篇
  2018年   167篇
  2017年   151篇
  2016年   172篇
  2015年   161篇
  2014年   269篇
  2013年   172篇
  2012年   210篇
  2011年   177篇
  2010年   167篇
  2009年   152篇
  2008年   134篇
  2007年   139篇
  2006年   117篇
  2005年   110篇
  2004年   63篇
  2003年   76篇
  2002年   61篇
  2001年   58篇
  2000年   45篇
  1999年   38篇
  1998年   36篇
  1997年   24篇
  1996年   23篇
  1995年   17篇
  1994年   21篇
  1993年   13篇
  1992年   15篇
  1991年   11篇
  1990年   14篇
  1989年   16篇
  1988年   10篇
  1987年   2篇
  1986年   2篇
  1985年   16篇
排序方式: 共有3543条查询结果,搜索用时 31 毫秒
31.
Two energetic events in the Earth’s magnetotail detected by Geotail are examined with detailed analysis of three-dimensional velocity phase space density. It is found that the occurrence of multiple ion components is high during these dynamic episodes. Different populations evolve independently of each other, suggesting particles from multiple activity sites contributing to the observed phase space density. The transport properties with consideration of multiple components are evaluated, with the result showing significant differences from those based on a single fluid approach. This comparison indicates that precise evaluation of the energy and magnetic flux transport of energetic events in the magnetotail requires resolving individual populations in the phase space density.  相似文献   
32.
复杂空间四连杆传动系统的一种算法   总被引:1,自引:0,他引:1  
杨国柱  詹承禹 《航空学报》1991,12(8):439-442
1.引言 空间四连杆机构的运动关系是一个空间几何关系。确定四连杆相互位置时,存在着一球面与圆弧相交或两圆弧相交等情况,它们的运动与几何关系都以一些二次联立方程式表达。求解与根的判定都比较复杂,有时还要用迭代方法。本文所介绍的方法采用空间坐标变换,将空间四连杆机构的运动点转换到特定的平面内,利用平面三角形的几何关系求解。所用的方法都是典型的,简便易行,特别适用于计算机计算。  相似文献   
33.
本文将文[1]中用于时间相关法计算的NND格式推广到定常超声速流动的空间推进计算,采用二步的预测、校正方法保证了推进方向的二阶精度,可以证明,这种二阶精度的NND格式具有TVD性质,是MacCormack二步显式格式的推广。本文首先将格式应用于二维平板上斜激波反射流场的推进计算,以检验格式捕捉激波的能力,同时研究了不同的通量分裂方法对格式捕捉激波能力的影响,得到了相当满意的结果。在此基础上,计算了航天飞机简化外形的身部超声速流场,给出了M_∞=10,α=0°,和M_∞=5,α=5°两种状态的部分结果,计算结果清楚地描绘了由于气流在机翼附近受到强烈压缩而产生的内嵌激波与外激波相交的复杂流场结构,与文[7]相比,流场结构更为清晰。  相似文献   
34.
2007年是我国发展和改革的关键之年,中央经济工作会议提出的从“又快又好”发展到“又好又快”发展的政策转变,意味着我国经济社会发展进入了新时期。为此,我们必须坚持以科学发展观统领经济社会发展全局,并切实将其落实;在宏观调控中完善市场机制,加快经济增长方式的转变;加快领导制度、组织制度、考核制度建设,发挥制度的综合效应,同时考虑制度实施的成本和环境。努力实现速度、质量、效益相协调,消费、投资、出口相协调,人口、资源、环境相协调,真正从经济发展的“又快又好”迈向“又好又快”。  相似文献   
35.
2006年开始的农村义务教育经费保障机制改革已经在全国全面铺开,自此,我国农村义务教育财政性经费第一次真正地被纳入公共财政的框架。而在这次改革中,财政专项投资发挥了非同寻常的作用,成为财政投入的主体形式。从义务教育财政专项投资的概念、现状和特点出发,解析农村义务教育经费保障机制改革条件下财政专项投资的资金安排、运营、支付和监管等若干问题,并对专项投资的功效和创新做出理论性的初探。  相似文献   
36.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
37.
城市化发展的阶段性及其规律研究   总被引:6,自引:0,他引:6  
文章提出了城市化发展一般经历初级、中级和高级三个阶段,并提出了城市化发展的一般规律;农业发展是城市化的初始动力,资本扩张是城市化的原动力,市场机制是加速城市化进程的基础性机制,大城市超前增长,城市经济要与农村经济协调发展,乡村人口进入城市门坎的高低直接影响着城市化的速度和水平。  相似文献   
38.
杨文将  刘宇 《飞行力学》2006,24(2):47-50
针对磁悬浮助推水平起飞运载器这种新型发射概念,采用概念性分析方法,研究地面发射参数对可重复使用运载器性能的影响规律。结果表明,助推发射水平起飞运载器在降低初始推重比、推进剂和结构质量等方面具有优势,最后得出地面发射参数的一组优化值。  相似文献   
39.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
40.
接触焊机理的探索   总被引:1,自引:0,他引:1  
探讨了接触焊的机理,提出了以电位差选择电极材料的原则,以及焊接处的接触电阻和母材内阻在焊接中有一定作用,而且焊接处的总热能是各种能量产生的热量之和,焊接的总热量也应包括通电加热产生的热量和断电后(锻压时)产生的热量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号