首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   65篇
  国内免费   36篇
航空   201篇
航天技术   37篇
综合类   19篇
航天   65篇
  2024年   1篇
  2023年   1篇
  2022年   16篇
  2021年   9篇
  2020年   15篇
  2019年   14篇
  2018年   20篇
  2017年   13篇
  2016年   18篇
  2015年   18篇
  2014年   16篇
  2013年   12篇
  2012年   22篇
  2011年   19篇
  2010年   12篇
  2009年   10篇
  2008年   15篇
  2007年   11篇
  2006年   13篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   5篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有322条查询结果,搜索用时 15 毫秒
41.
本文探讨如何通过地源热泵技术实现建筑节能。研究通过地源热泵来实现一机多用,使其既能用于冬季供暖,又可以用于夏季制冷。同时也讨论了如何与太阳能相配合,来实现地热平衡。文中还给出了通过插值法和曲线拟合法对测量数据进行处理获得变温带和增温带的温度-深度曲线的方法。  相似文献   
42.
Cavitation caused by insufficient suction is a major factor that influences the life of aircraft pumps. Currently, pressurizing the tank can solve the cavitation problem under steady large-flow conditions. However, this method is not always effective under transient conditions (from zero flow to full flow in a very short time). Moreover, to apply and design other measures, such as a boost impeller, the suction dynamics during the transient period must be investigated. In this paper, a novel approach based on the pressure wave propagation theory is proposed for predicting the inlet pressure of an aircraft pump under transient conditions. First, a dynamic model of a typical aircraft pump is established in the form of differential equations. Then, the transient flow model of the inlet line is described using momentum and continuity equations, and the governing equations are discretized by the method of characteristics and the finite difference method. The simulated results are in good agreement with the results from verification tests. Further simulation analysis indicates that the wave velocity and transient time may influence the inlet and reservoir pressure as well as the size of the inlet line. Finally, solutions for upgrading the inlet pressure are discussed. These solutions provide guidelines for designing inlet installations.  相似文献   
43.
为了提高水系统中水泵的实际运行效率和扬程利用率,降低发动机试验成本,减少能量浪费,以某型发动机台架试验水系统为研究对象,综合考虑了装置静扬程、管路的各种局部损失和沿程损失开展装置扬程的计算。同时根据水系统所需的装置扬程、流量及其变化规律,从泵的参数及其特性曲线入手,进行泵的选型分析,确定合适的泵的类型、台数及连接方式。通过水系统装置扬程的计算和泵的选型分析,结合泵带来的能效利用、工程投入和运行费用等因素,可在满足发动机试验需要的同时实现经济利益最大化,为今后类似水系统工程的设计提供借鉴和指导。  相似文献   
44.
液压泵摩擦副可靠性设计基本方法研究   总被引:2,自引:0,他引:2  
阐述了液压泵摩擦副可靠性分析及设计的基本步骤和原则。作为实例,文中给出了滑靴耐磨可靠性设计所采用的(pv)应力模型新方法。  相似文献   
45.
推进剂药浆粘弹性特征研究   总被引:5,自引:1,他引:4       下载免费PDF全文
唐汉祥 《推进技术》1998,19(4):95-99
用CV20N流变仪研究了HTPB推进剂、CTPB推进剂和聚醚推进剂药浆的粘弹性特征。结果表明:推进剂药浆为粘弹性流体,复合粘度随推进剂品种、配方特点、频率范围不同而呈不同变化规律,复合模量、损耗模量和贮能模量随频率增加均呈上升趋势;损耗模量一般比相应贮能模量高约一个数量级;贮能模量存在数个衰减峰;衰减峰与损耗角正切峰成对映。提出了推进剂药浆流体的结构模式,并用它解释了药浆的粘弹性。  相似文献   
46.
JMP超高效率消防泵专用三相异步电动机是河南豫通电机股份公司与新乡市电机系统节能工程技术研究中心共同进行研究、设计、开发的新型节能专用电动机产品。其能效水平达到IE4能效等级。目前,产品开发已经完成,通过国外第三方能效检测机构的检测,取得了产品能效检测报告及出口许可的标识,并且已经批量出口到国外,得到国外客户的认可。介绍了该电动机的设计思路和样机检测结果。  相似文献   
47.
采用定常和非定常数值方法系统研究了离心血泵在供压173 mmHg时,4组不同叶顶间隙下的血流动力学特性和血液相容性。所研究的间隙分别为5.0、2.0、1.0 mm和0.2 mm,对速度、湍动能等参数的分布规律以及标准溶血指数(normalized index of hemolysis,NIH)随叶顶间隙大小的变化规律进行了研究。结果表明:在流量3.0 L/min,供压173 mmHg工况下,原型血泵有较好的血液相容性;随着叶顶间隙的减小,最大切应力与标准溶血指数呈显著单峰变化趋势,在1.0 mm间隙结构取得最低标准溶血指数0.000 5 g/100 L,并降低了在叶轮侧壁与泵壳下壁面的狭缝内形成血栓的风险;定常与非定常的结果对比表明:定常结果往往会过小的预测溶血,瞬态标准溶血指数随叶轮转动呈周期性变化,其平均值与定常结果相差在5%以内。   相似文献   
48.
针对泵试验开式系统NPSHr测量精度低、大功率泵闭式系统发热量大的问题,提出了一种开闭式泵试验系统的设计及控制方法,该系统能完成各试验数据的采集、显示、处理、自动调节、校正和打印。通过储水罐的等流量调节,使试验系统更加稳定、可靠,精度也大为提高。  相似文献   
49.
窦唯 《宇航学报》2013,34(12):1557-1568
针对低温液体火箭发动机涡轮泵转子密封系统开展了动力学稳定性研究。采用有限元法建立了涡轮泵转子密封系统的动力学模型,研究了安装偏心对转子密封系统稳定性的影响,给出了失稳转速随安装偏心的变化规律,研究了当量密封间隙对涡轮泵转子系统稳定性的影响,分析了当量密封间隙对失稳转速的影响,最后开展了冷吹试验和热试试验研究,为液体火箭发动机涡轮泵转子系统结构设计、诊断与维护提供理论依据。  相似文献   
50.
加力燃油泵隔舌倒圆抑制分离的数值模拟   总被引:1,自引:1,他引:0  
薛梅新  朴英 《航空动力学报》2012,27(12):2799-2804
采用动态亚格子应力模型对加力燃油泵内非定常流场进行大涡模拟,探讨了原隔舌空蚀机理,并研究了不同倒圆半径下泵隔舌附近的瞬时流动规律及流量扬程特性.计算结果表明:小流量工况原隔舌处分离产生的强剪切涡会诱发空化,涡脱落形成的分离再附位置与空蚀破坏核心区域相符;小流量工况下,隔舌倒圆在扩散管内形成转向涡,消除了隔舌壁面分离绕流及附着剪切涡,4mm倒圆半径可以避免空化;设计流量范围内隔舌倒圆提高了泵出口扬程,流量越小扬程增幅越大,小流量工况时扬程增幅达3%.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号