首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
航空   10篇
航天技术   27篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
1.
In this paper, we investigate temporal and spatial magnetosphere response to the impact of interplanetary (IP) shocks with different inclinations and speeds on the Earth’s magnetosphere. A data set with more than 500 IP shocks is used to identify positive sudden impulse (SI+) events as expressed by the SuperMAG partial ring current index. The SI+ rise time (RT), defined as the time interval between compression onset and maximum SI+ signature, is obtained for each event. We use RT and a model suggested by Takeuchi et al. (2002) to calculate the geoeffective magnetospheric distance (GMD) in the shock propagation direction as a function of shock impact angle and speed for each event. GMD is a generalization of the geoeffective magnetosphere length (GML) suggested by Takeuchi et al. (2002), defined from the subsolar point along the X line toward the tail. We estimate statistical GMD and GML values which are then reported for the first time. We also show that, similarly to well-known results for RT, the highest correlation coefficient for the GMD and impact angle is found for shocks with high speeds and small impact angles, and the faster and more frontal the shock, the smaller the GMD. This result indicates that the magnetospheric response depends heavily on shock impact angle. With these results, we argue that the prediction and forecasting of space weather events, such as those caused by coronal mass ejections, will not be accurately accomplished if the disturbances’ angles of impact are not considered as an important parameter within model and observation scheme capabilities.  相似文献   
2.
We present an analytic model of a stationary bow shock which describes the interaction between a supermagnetosonic ambient wind and an obstacle with spherical-like frontal shape. We develop expressions for the bow shock’s geometry and the physical properties of the plasma sheath as functions of the upstream conditions. The solution is limited to magnetic fields parallel to the upstream velocity. The model allows to use any value of the upstream alfvenic and sonic Mach numbers and the polytropic index (γγ), pointing out the influence of γγ for the magnetosheath compression and the bow shock shape. When both Mach numbers are small, the upstream magnetic field intensity affects also the bow shock shape. We compare our results with other models finding important consistencies. We also compare our results with in-situ data, we fund a reasonable qualitative agreement; however, it seems that our model underestimates the magnetosheath size.  相似文献   
3.
Interplanetary coronal mass ejections (ICMEs) originating from closed field regions on the Sun are the most energetic phenomenon in the heliosphere. They cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles. ICMEs are the interplanetary manifestations of CMEs typically remote-sensed by coronagraphs. This paper summarizes the observational properties of ICMEs with reference to the ordinary solar wind and the progenitor CMEs.  相似文献   
4.
Cairns  Iver H.  Knock  S.A.  Robinson  P.A.  Kuncic  Z. 《Space Science Reviews》2003,107(1-2):27-34
Recent data and theory for type II solar radio bursts are reviewed, focusing on a recent analytic quantitative theory for interplanetary type II bursts. The theory addresses electron reflection and acceleration at the type II shock, formation of electron beams in the foreshock, and generation of Langmuir waves and the type II radiation there. The theory's predictions as functions of the shock and plasma parameters are summarized and discussed in terms of space weather events. The theory is consistent with available data, has explanations for radio-loud/quiet coronal mass ejections (CMEs) and why type IIs are bursty, and can account for empirical correlations between type IIs, CMEs, and interplanetary disturbances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   
6.
Coronal mass ejections and post-shock streams driven by them are the most efficient drivers of strong magnetospheric activity, magnetic storms. For this reason there is considerable interest in trying to make reliable forecasts for the effects of CMEs as much in advance as possible. To succeed this requires understanding of all aspects related to CMEs, starting from their emergence on the Sun to their propagation to the vicinity of the Earth and to effects within the magnetosphere. In this article we discuss some recent results on the geoeffectivity of different types of CME/shock structures. A particularly intriguing observation is that smoothly rotating magnetic fields within CMEs are most efficient in driving storm activity seen in the inner magnetosphere due to enhanced ring current, whereas the sheath regions between the shock and the ejecta tend to favour high-latitude activity.  相似文献   
7.
典型二元高超声速进气道设计方法研究   总被引:1,自引:2,他引:1  
综合了一系列典型二元高超声速进气道的设计和性能估算方法, 给出了可行的设计原则.在满足流量、增压以及工作范围(起动性能和反压承受能力)的条件下, 给出了进气道进口、外压波系、内压缩通道、唇罩及隔离段的设计方法.采用此方法, 以H=22800 m、Ma0=6为设计点, 完成了一高超声速进气道的初步设计, 并估算得到了进气道性能参数、进气道的起动马赫数和反压承受能力, 对比CFD计算结果, 误差不大.通过该方法得到的进气道具有结构简单、流量系数大、压缩损失小的特点, 不通过优化即可得到性能较为良好的模型.   相似文献   
8.
在一维太阳风磁流体(MHD)数值模拟中, 应用时空守恒元和解元(Conservation Element/Solution Element, CE/SE)方法, 建立了一个行星际激波扰动传播模型(1D-MHD (CE/SE)模型), 用来预报行星际激波到达时间. 收集了1997年2月至2002年8月间的137个激波事件, 对激波到达地球轨道附近的传播时间进行了预测, 并将预报结果与STOA, ISPM, HAFv.2以及SPM模型所得结果进行比较. 对于相同的样本事件, 1D-MHD (CE/SE)模型给出的渡越时间平均绝对值误差并不大于其他4个模型, 且该模型预报的相对误差小于10 %的事件占25.6 %, 小于30 %的事件占69.3 %, 小于50 %的事件占87.6 %, 其预报精度与其他模型相比基本相当. 这表明该模型在空间天气的激波到达时间预报方面有潜在的应用价值.  相似文献   
9.
航空头盔典型件冲击保护性能实验研究   总被引:1,自引:0,他引:1  
利用分离式Hopkinson压杆研究了几种航空头盔典型件的冲击保护性能,测量了各构件的能量吸收率.讨论了冲击过程和能量吸收过程,进一步分析了头盔外壳材料力学性能及泡沫衬垫密度对头盔能量吸收率的影响规律.实验表明,在一定范围内外壳力学性能和泡沫衬垫密度对于能量吸收起着重要作用.为设计新一代航空头盔提供了可靠的实验依据.  相似文献   
10.
We extend the empirical coronal mass ejection (CME) arrival model of Gopalswamy et al. [Gopalswamy, N. et al. Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res. 106, 29207, 2001] to predict the 1-AU arrival of interplanetary (IP) shocks. A set of 29 IP shocks and the associated magnetic clouds observed by the Wind spacecraft are used for this study. The primary input to this empirical shock arrival model is the initial speed of white-light CMEs obtained using coronagraphs. We use the gas dynamic piston–shock relationship to derive the ESA model which provides a simple means of obtaining the 1-AU speed and arrival times of interplanetary shocks using CME speeds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号