首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   12篇
  国内免费   29篇
航空   57篇
航天技术   29篇
综合类   13篇
航天   25篇
  2023年   4篇
  2022年   6篇
  2021年   11篇
  2020年   1篇
  2019年   7篇
  2018年   12篇
  2017年   4篇
  2016年   7篇
  2015年   8篇
  2014年   14篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
71.
陈川  杨武霖  余谦  李明  龚自正 《宇航学报》2019,40(2):156-163
在众多空间碎片移除技术中,天基激光烧蚀驱动是一种高效的、有广阔应用前景的移除技术,特别是针对移除海量的、尺寸在1~10 cm的危险碎片而言,更是具有独特优势。然而,这一技术对高能激光器单脉冲能量、光束质量、发射镜口径等要求很高,目前的硬件水平还达不到实用指标要求,制约了其天基应用。为了克服这些硬件技术障碍,本文另辟蹊径,利用小卫星概念,提出了由不同轨道高度小卫星平台组成小卫星星座,通过在每个小卫星平台上的激光驱动接力来逐步降低碎片轨道高度,最终达到移除空间碎片的小卫星接力移除星座的构想。基于现有的激光器性能参数,根据激光烧蚀驱动碎片动力学模型计算了单个卫星平台的移除能力,结果显示,10 J单脉冲能量激光器和0.5 m直径发射镜,能够对20 km范围内、尺寸小于10 cm碎片进行有效驱动。进而,针对空间碎片密集度高而应用最广的800 km轨道高度区域,设计了由分布在不同轨道高度的30颗小卫星组成接力驱动移除星座系统方案,通过仿真模拟计算验证了星座系统的移除碎片的可行性。该研究利用目前热门的小卫星星座,降低了天基激光移除空间碎片技术对硬件的性能要求,为该技术的应用提供了新的思路和途径,所提出的小卫星接力驱动星座系统方案也有工程参考价值。  相似文献   
72.
张辉  杨继平  王君平 《推进技术》2001,22(6):526-528
为解决铸铝薄壁件进气机匣的深孔加工,针对麻花钻加工深孔的难点,在加工中心上研究了用枪钻和GT深孔麻花钻高速加工深孔的方案和工艺参数,并探讨了雾化高压气体强制排屑加工深孔的技术,获得了典型薄壁箱体零件的高速钻深孔的经验。  相似文献   
73.
针对珩磨加工阀套孔生产率低、加工精度难控制等问题,开展了内孔珩磨技术研究,通过分析9Cr18不锈钢珩磨过程中材料去除率的变化规律,提出一套适用于珩磨加工的材料去除体积理论公式。同时为使珩后孔不同轴向位置处的孔径趋近一致,需要在上下越程处增设停留时间,以此改进初始模型。基于初始模型与优化模型分别开展单因素珩磨试验,结果表明,往复速度和珩磨压强是影响珩磨材料去除体积的显著因素,针对珩磨材料去除体积与珩后孔径差,优化模型与初始模型的预测结果分别与对应的试验结果对比,可发现优化模型预测精度相较于初始模型分别提高25%~30%。在越程段增设停留时间并不会降低加工效率,可提高珩后孔尺寸精度,实现材料去除体积的准确预测。  相似文献   
74.
Tumbling debris has become a great threat to orbit activities. Contactless interaction is a novel concept for active debris removal, through which the tumbling debris no longer rotates freely but is under control. The contactless interaction method aims to de-tumble the debris and then maintain desired relative states between the spacecraft and debris. The spacecraft is simultaneously stabilized through three-axis attitude control, which makes the de-tumbling and capture operation much safer, more effective and accurate. The dynamics and control for the contactless interaction have been little studied in the past years. This paper considers a generic dynamics and control problem for contactless interaction between a spacecraft and debris. A translational and rotational dynamics model of contactless interaction is proposed and the 6-DOF equations are established. The contactless interaction control law is designed with the backstepping method, and the spacecraft three-axis control law is designed with the PD control. Simulation results show that the angular momentum is transferred from the debris to the spacecraft and the debris is thus de-tumbled. The desired relative states are achieved efficiently. Significantly, the spacecraft and debris no longer rotate in the inertial frame and, hence, the safety and accuracy for capture operation are guaranteed.  相似文献   
75.
空间碎片对人类航天活动的危害很大,用高能激光减缓其危害性已受到广泛关注.针对地基激光清除椭圆轨道空间碎片问题,提出了单脉冲变轨和多脉冲变轨两种计算分析方法.仿真计算结果表明,碎片初始真近角在100°~150°附近降轨效果最佳;从激光器在地球表面可供布站的区域讲,在碎片真近角180°附近,布站区域最大;当推进激光总作用时间较短或作用距离较小时,单脉冲变轨计算模型和多脉冲变轨计算模型计算结果接近,因此可采用单脉冲变轨计算模型计算结果近似表示多脉冲作用效果.  相似文献   
76.
The milling stability of thin-walled components is an important issue in the aviation manufacturing industry,which greatly limits the removal rate of a workpiece.However,for a thin-walled workpiece,the dynamic characteristics vary at different positions.In addition,the removed part also has influence on determining the modal parameters of the workpiece.Thus,the milling stability is also time-variant.In this work,in order to investigate the time variation of a workpiece's dynamic characteristics,a new computational model is firstly derived by dividing the workpiece into a removed part and a remaining part with the Ritz method.Then,an updated frequency response function is obtained by Lagrange's equation and the corresponding modal parameters are extracted.Finally,multi-mode stability lobes are plotted by the different quadrature method and its accuracy is verified by experiments.The proposed method improves the computational efficiency to predict the time-varying characteristics of a thin-walled workpiece.  相似文献   
77.
为了研发具有自主知识产权的气源起动装备,立足于大型飞机较高压力、超大流量的特殊气源起动保障需求,设计了以双级无油螺杆压缩为核心技术的供气流程,对其中涉及的级间压力、散热量、除水量等关键参数进行了分析与计算,为解决超大流量气源的二次升压、风冷散热、高温除水等核心技术难题奠定了基础。  相似文献   
78.
We focus on preventing collisions between debris and debris, for which there is no current, effective mitigation strategy. We investigate the feasibility of using a medium-powered (5 kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO). The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of nearly half of all catastrophic collisions involving debris using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term operation could entirely mitigate the Kessler syndrome in LEO, without need for relatively expensive active debris removal.  相似文献   
79.
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity?s access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today?s restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.  相似文献   
80.
GH4169 alloy is one of the most commonly used materials in aero engine turbine blades, but its machinability is poor because of its excellent strength at high temperatures. Electrochemical machining (ECM) has become a common method for machining this alloy and other difficult-to-machine materials. Electrochemical grinding (ECG) is a hybrid process combining ECM and conventional grinding. In this paper, investigations conducted on inner-jet ECG of GH4169 alloy are described. Two types of inner-jet ECG grinding wheels were used to machine a flat bottom surface. The machining process was simulated using COMSOL software, and machining gaps under different machining parameters were obtained. In addition, maximum feed rates and maximum material removal rates under different machining parameters were studied experimentally. The maximum sizes and the uniformity of the distributions of the gaps machined by the two grinding wheels were compared. The effects of different applied voltages on the machining results were also investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号