首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   175篇
  国内免费   201篇
航空   540篇
航天技术   197篇
综合类   51篇
航天   400篇
  2023年   15篇
  2022年   37篇
  2021年   35篇
  2020年   54篇
  2019年   44篇
  2018年   43篇
  2017年   37篇
  2016年   61篇
  2015年   59篇
  2014年   64篇
  2013年   41篇
  2012年   55篇
  2011年   74篇
  2010年   55篇
  2009年   41篇
  2008年   57篇
  2007年   62篇
  2006年   40篇
  2005年   38篇
  2004年   29篇
  2003年   20篇
  2002年   30篇
  2001年   18篇
  2000年   28篇
  1999年   13篇
  1998年   14篇
  1997年   22篇
  1996年   21篇
  1995年   8篇
  1994年   13篇
  1993年   12篇
  1992年   9篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
排序方式: 共有1188条查询结果,搜索用时 15 毫秒
41.
三维自适应终端滑模协同制导律   总被引:2,自引:1,他引:1  
司玉洁  熊华  宋勋  宗睿 《航空学报》2020,41(z1):723759-723759
针对多枚导弹协同作战的问题,且多枚导弹之间保持有向拓扑通信的条件下,基于终端滑模法设计了视线方向及视线法向的双层协同制导律。其中,视线方向的制导指令能够保证导弹同时完成拦截任务;视线法向上的三维制导律能够保证每枚导弹以期望的视线角攻击目标,从而发挥各枚导弹的最大杀伤力,并且视线角的约束相当于规划了末制导段导弹的弹道问题,在一定程度上避免攻击目标前导弹间发生碰撞。同时,针对所设计的滑模制导律设计了新的自适应律,从而加快了滑模面的收敛速度并且削弱了由符号函数引起的系统抖振现象。基于李雅普诺夫稳定性理论,证明了所设计制导律的正确性,并在最后给出了数学仿真实验,验证了所设计制导律的有效性及优越性。  相似文献   
42.
随着技术的发展及战场环境的日益复杂化,拦截机动目标的需求越来越大。然而传统制导律在拦截机动目标时存在制导精度差、末端过载突变的问题,故提出了一种基于分数阶微积分理论的最优导引律。首先,介绍了分数阶微积分的定义、性质及其数字实现方法;然后,分析了弹目相对运动关系,通过分数阶变阶次建模和最优控制理论推导出了分数阶导引律;最后,仿真结果表明:与传统比例导引法相比,所设计的分数阶最优导引律能够保持比例导引法良好的追踪性能且拦截时间能够缩短2s,末端过载值趋近于0。该方法解决了传统比例导引法在末端由视线角速率发散而导致的末端过载突变问题。  相似文献   
43.
一种基于李群方法的新型三维制导律设计   总被引:5,自引:2,他引:5  
使用李群方法设计了一种新型三维制导律。在俯仰、偏航通道之间存在强耦合关系时,基于双通道解耦的假设构造三维制导律变得困难,而基于李群方法则可以在不进行通道解耦的条件下进行制导律设计。本文首先基于矢量建立了三维制导的一般运动学模型,在给出了矢量的SO(3)群描述之后,按照SO(3)群上的广义比例 微分(PD)控制方式进行了制导律设计。所得到的三维制导律既能用于目标机动的制导,也能用于有终端约束的制导。该制导律在二维平面的简化结果与传统比例导引的结果一致。最后用典型飞行轨迹仿真验证了其可行性和良好的性能。  相似文献   
44.
多约束条件下的制导律研究综述   总被引:4,自引:0,他引:4  
随着导弹等制导武器机动能力的增强,制导精度的提高,多约束条件下的制导律研究成为精确制导研究的新热点。简要介绍了多约束条件下的制导问题,重点评述了近年来多约束条件下的制导律研究情况,对目前多约束条件下的制导律设计进行了比较详细的研究,系统分析了各种方法的优缺点,并分析了其可能的研究内容动态和方向,为精确制导技术的发展提供了参考和借鉴。  相似文献   
45.
制导控制半实物仿真系统设计   总被引:1,自引:0,他引:1  
首先介绍了制导控制半实物仿真系统功能、仿真平台系统结构。详细论述了软硬件模型、控制工作流程。在实现仿真系统基础上,结合半实物仿真研究设计的实际需求,强调了通用分布式半实物仿真系统开放结构的研究重点和发展趋势。同时给出了系统结构和仿真接口的设计考虑。  相似文献   
46.
陈峰  肖业伦  陈万春 《航空学报》2010,31(2):342-349
考虑拦截器使用耗尽关机固体推进系统的情况,提出需用速度增益曲面概念,设计了基于该概念的大气层外超远程拦截导引方法。根据Lambert导引,给定拦截时间就有唯一的指令推力方向与之对应,导引过程分为两个阶段:零控拦截到达阶段,选择最优拦截时间,需用速度增益曲面迅速与助推时间-拦截时间平面相切;零控拦截保持阶段,拦截时间不断减小,保持需用速度增益曲面在助推时间-拦截时间平面上滑动,消耗多余的推进剂。利用拟零控拦截概念使两个导引阶段平缓过渡,避免了导引方法切换时推力方向的跳变。导引律计及了J2项摄动对滑行段弹道的影响,导引精度对推进系统参数偏差的鲁棒性强。仿真结果表明本文制导方法用于大气层外超远程目标拦截,脱靶量仅为km量级,推进系统参数偏差对导引精度的影响很小。  相似文献   
47.
论述了神经网络理论在飞行器再入制导方面的应用.在分析各方法优缺点的基础上,提出了一种基于广义同归神经网络(GRNN)模型的再入制导方法.神经网络通过一组选定的轨迹样本进行有导师训练,训练好之后作为控制指令生成器,输入为再入过程中飞行器的状态参数,输出为倾侧角控制量,迎角控制量则由迎角剖面给定.仿真结果验证了该方法在再入...  相似文献   
48.
田野  张洪波  吴杰 《飞行力学》2011,29(3):68-71
对于深空探测、大范围远程交会、抵近观察等中段飞行时间较长的航天任务,中段轨道修正是完成任务的重要保证.基于摄动制导的思路,通过对轨道方程进行线性化,研究了二体条件下的中段轨道修正方法.在近地航天任务中,各种摄动力特别是J2项对终端位置精度的影响不可忽略,因此研究了考虑J2摄动影响时线性化方程的补偿方法.最后通过数值仿真...  相似文献   
49.
A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and the maximum crossrange method are used to obtain virtual target set; afterward, closed-loop bank angle guidance law is used to find footprint by solving closest approach problem for each element in virtual target set. Then based on quasi-equilibrium glide condition, the typical inequality reentry trajectory constraints are converted to angle of attack lower boundary constraint. Constrained by the lower boundary, an original and practical angle of attack parametric method is proposed. By using parametric angle of attack profile, optimization algorithm for angle of attack is designed and the impact of angle of attack to footprint is discussed. Simulations with different angle of attack profiles are presented to demonstrate the performance of the proposed footprint solution method and validity of optimal algorithm.  相似文献   
50.
富立  范耀祖  宁文如 《航空学报》1998,19(Z1):93-96
基于奇异摄动方法,提出了中远程空-空导弹由爬升段控制、巡航段控制和交接段最小能量控制3部分构成的次优中制导律。根据工程实际要求,给出了简单的、易于实现的中制导律执行算法。结果表明,该制导律较好地满足了中制导段的要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号