首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   55篇
  国内免费   122篇
航空   501篇
航天技术   23篇
综合类   78篇
航天   12篇
  2024年   3篇
  2023年   4篇
  2022年   13篇
  2021年   16篇
  2020年   21篇
  2019年   16篇
  2018年   14篇
  2017年   33篇
  2016年   39篇
  2015年   24篇
  2014年   29篇
  2013年   33篇
  2012年   41篇
  2011年   56篇
  2010年   34篇
  2009年   23篇
  2008年   29篇
  2007年   24篇
  2006年   17篇
  2005年   16篇
  2004年   10篇
  2003年   5篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1998年   8篇
  1997年   12篇
  1996年   8篇
  1995年   5篇
  1994年   10篇
  1993年   14篇
  1992年   5篇
  1991年   3篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
排序方式: 共有614条查询结果,搜索用时 31 毫秒
111.
离散涡方法(DVM)是一种无网格的涡运动算法,适用于解决易产生分离流的非定常问题,将其应用于结冰过程中的流场求解,在有效模拟分离流动的同时能避免冰形尖角对网格质量的影响。但离散涡方法基于不可压 N-S 方程,无法应用于预测可压缩流动下的结冰过程。本文在离散涡方法的基础上添加普朗特—格劳尔特压缩性修正,进行基于离散涡方法的可压缩流动下的数值模拟,并将其应用于翼型结冰预测;对流场分布、结冰冰形和结冰模型计算过程等仿真结果进行对比和分析。结果表明:引入压缩性修正后的离散涡方法能较好地模拟可压缩流动,与实验值相比,基于该方法得到的结冰数值模拟结果符合良好,对结冰数值模拟在工程上的应用提供了一定的参考。  相似文献   
112.
转子叶栅非同步振荡发声特性研究   总被引:3,自引:1,他引:2  
轴流压气机转子叶片排振荡疲劳失效是常见的气动弹性失稳问题。当转子叶栅处于非同步振荡状态下时,压气机管道内部将伴随着异常噪声的产生,这类噪声的频率既不是分布在叶片通过频率及其谐波上,也不是分布在转子轴频率及其谐波上,同时也不满足简单多普勒效应。为了解释这种异常噪声现象,以三维升力面理论为基础,讨论叶片对其附近流体施加非定常载荷的发声问题,给出了转子叶栅振荡异常发声问题的物理解释,建立了声场频率及模态特性与转子声源特性的直接关系式,并给出了频率特性不同于叶片通过频率且不符合简单多普勒效应的完整解释。在此基础上,通过机理性实验研究证实了该模型的正确性。实验结果表明,理论预测声场的频率和周向模态特性与实验结果完全一致。  相似文献   
113.
基于雷诺平均Navier-Stokes方程的表面传热系数计算   总被引:1,自引:1,他引:0  
侯硕  曹义华 《航空动力学报》2015,30(6):1319-1327
采用有限体积法数值求解控制二维绕流的雷诺平均Navier-Stokes(RANS)方程组,计算了光滑和粗糙NACA0012翼型以及圆柱表面的局部表面传热系数.分析了近壁面网格间距、湍流模式和表面粗糙度模型对数值计算结果的影响.结果表明:切应力输运(SST)湍流模型能够区分层流和湍流边界层的对流传热特性,并能预测转捩的发生;采用Spalart-Allmaras(S-A) 扩展模型能够计算粗糙壁面的对流传热系数,但采用忽略转捩函数的S-A模型不能有效计算层流边界层的传热系数.当近壁面网格间距接近10-5量级的黏性子层时,在光滑和粗糙壁面都能得到准确的传热系数分布.结合合适的近壁面网格间距,湍流模式和表面粗糙度模型可以得到与实验数据十分接近的表面传热系数曲线.通过与求解不可压缩RANS方程得到的结果比较后发现,不可压缩RANS方程主要忽略了压缩和黏性耗散效应,这种效应可以通过绝热升温项的形式并入总体热分析.   相似文献   
114.
针对传统低通滤波器在脉冲宽度调制(PWM, Pulse Width Modulation)开关功放电流降噪过程中存在去噪效果与系统带宽难以兼顾的问题,提出了一种基于提升小波变换的功放电流实时降噪法.首先基于dB4提升小波算法,采用滑动数据窗、对称边界拓展和阈值法强制降噪等相结合的方案实现对功放电流的实时降噪.然后根据不同小波分解层数对系统截止频率的影响,确定合适的小波分解层数.实验证明,提升小波实时降噪算法既可以有效地滤除功放电流噪声,又对系统带宽和相角滞后影响较小,非常适用于对实时性和信噪比都有较高要求的磁悬浮高速转子系统.   相似文献   
115.
翼型前缘变形对动态失速效应影响的数值计算   总被引:1,自引:1,他引:0  
卢天宇  吴小胜 《航空学报》2014,35(4):986-994
翼型或机翼的动态失速效应所引起的低头力矩和正气动阻尼限制了飞行器气动性能的提高,甚至可能诱导发生不稳定运动。应用于小尺寸机翼的前缘动态变形(DDLE)技术,通过实时改变前缘形状,能够改善翼型前缘区域的速度梯度,进而抑制动态失速效应。采用转捩剪切应力输运(SST)黏性模型结合分区混合动态网格技术,研究了这种前缘变形对机翼俯仰运动所引起的非定常流动的影响,得到通过小幅度前缘变形抑制和延迟动态失速的方法,从而提高翼型的气动性能。翼型NAC A0012的数值模拟结果与动态失速风洞试验结果比较表明:所使用的数值计算方法能够较为准确地模拟翼型在动态失速过程中升力系数与俯仰力矩系数的变化情况,可用于研究前缘变形对翼型俯仰运动所引起的非定常流动的影响。前缘动态变形翼型俯仰运动过程的非定常流场的数值模拟表明:在大迎角下不同幅度的前缘下垂运动能够抑制流动分离的发生,从而抑制动态失速,但在大迎角下小幅度高频率的前缘下垂变形能更高效地抑制动态失速;前缘变形幅度以及变形沿中弧线的分布对升力系数和俯仰力矩系数的影响并不明显。  相似文献   
116.
为研究翼型结冰状态下的载荷变化规律,对翼型进行测力实验.研制一台三分量翼型测力天平.天平设计的突出难点为设计载荷极不匹配,阻力测量载荷很小.设计时,针对翼型载荷的特点,采用片梁组合方式测量阻力,四柱梁测量法向力及俯仰力矩,并采用有限元方法对结构进行了验证计算.主要介绍天平的设计、校准及应用情况.  相似文献   
117.
不同迎角的翼型气弹特性风洞实验研究   总被引:1,自引:0,他引:1  
基于可在不同迎角下作沉浮、俯仰两自由度运动的翼段振动装置,在低速风洞中分别针对普通薄翼型NA-CA0012和风力机翼型NREL S809进行气动弹性测试,得到不同实验状态的气动弹性振动时域响应。分别观察到经典颤振和失速颤振现象,并证明了迎角改变对两种翼型颤振特性的影响。  相似文献   
118.
大型水陆两栖飞机翼型优化设计   总被引:1,自引:1,他引:0  
对大型水陆两栖飞机翼型进行了数值优化设计研究,通过以翼型设计升力系数下的阻力系数最小化为设计目标和以翼型低头力矩、最大升力系数、失速后升力系数下降率作为约束条件的大型水陆两栖飞机翼型优化设计,在满足翼型相对厚度、最大厚度位置、最大弯度、最大弯度位置符合相应设计范围的情况下,得到了综合性能较基本翼型提高的新翼型.该设计方法适用于大型水陆两栖飞机的翼型设计,是一种符合工程应用实际的数值优化设计方法.   相似文献   
119.
改进了传统的翼型湍流边界层尾缘噪声BPM半经验预测公式。传统的BPM半经验湍流边界层尾缘噪声预测公式对高攻角和厚翼型在高频范围的预测结果大于实验结果,通过分析比较传统BPM半经验预测公式和Howe翼型尾缘噪声理论模型发现:这主要是由于传统BPM半经验预测公式对压力面声源噪声辐射高估引起的。因此将压力面声源噪声辐射与吸力面声源噪声辐射的幅值比由原来的边界层位移厚度一次方比值改进为二次方比值,进而得到了改进后的BPM半经验预测公式;使用改进后的BPM半经验预测公式对NACA0012翼型在不同来流不同攻角下的噪声辐射进行了预测比较,发现对于NACA0012翼型,改进后的BPM半经验预测公式具有较高精度;另外也预测了较厚的风力机翼型DU-96-W-180,预测结果明显改善。  相似文献   
120.
超临界层流翼型优化设计策略   总被引:4,自引:0,他引:4  
针对超临界层流翼型设计问题,提出一种两轮优化策略。采用γ-Reθt转捩模型耦合剪切应力输运(SST)模式的湍流模型对翼型边界层转捩进行预测。翼型几何参数化建模采用形状分类函数转换(CST)方法,设计变量为描述翼型几何特征的参数。第1轮优化的目的是尽量提高层流区域的比例,气动分析模型为基于Kriging模型的代理模型,优化算法为遗传算法,通过优化获得满足约束要求的层流翼型。第2轮优化目的是对第1轮优化获得的翼型进行微调,进一步提高翼型的升阻比,气动分析直接采用CFD程序,优化算法采用基于梯度的优化算法。算例表明,应用本文提出的两轮优化策略,可将超临界翼型NASA SC(2)0412优化设计成超临界层流翼型,翼型的上下表面层流区比例分别达到了55.5%和47.0%,升阻比提高了38.1%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号