首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   67篇
  国内免费   75篇
航空   230篇
航天技术   186篇
综合类   26篇
航天   194篇
  2024年   4篇
  2023年   10篇
  2022年   6篇
  2021年   16篇
  2020年   17篇
  2019年   27篇
  2018年   22篇
  2017年   12篇
  2016年   22篇
  2015年   26篇
  2014年   52篇
  2013年   25篇
  2012年   37篇
  2011年   48篇
  2010年   33篇
  2009年   28篇
  2008年   25篇
  2007年   26篇
  2006年   35篇
  2005年   26篇
  2004年   23篇
  2003年   14篇
  2002年   17篇
  2001年   20篇
  2000年   15篇
  1999年   6篇
  1998年   9篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
排序方式: 共有636条查询结果,搜索用时 31 毫秒
81.
针对导航星座自主定轨中的星座整体旋转问题,采用增设少量地面锚固站的方法可有效解决该问题。通过推导星地距离对卫星轨道升交点赤经的偏导数,证明了星地距离对卫星轨道升交点赤经可观。仅考虑在我国大陆范围内布设锚固站的条件下,仿真分析了锚固站数量以及布局对导航星座自主定轨精度的影响。仿真实验结果表明:采用3个以上的锚固站,即可有效控制星座整体旋转,在14d的仿真时段内卫星自主定轨精度保持4m以内;锚固站数量越多,自主定轨精度越高,但随着锚固站数量的增加,自主定轨精度改善程度越来越小;在保持4个锚固站的情形下,采用不同的锚固站布局方案,自主定轨精度并无明显差别。  相似文献   
82.
在介绍在轨用户星中继终端的分类、功能和使用现状的基础上,重点对用户星中继终端多约束条件进行了梳理分析。为缓解常态化应急测控带来的资源紧张矛盾,提出了用户星中继终端在轨应用策略,即Ka/S模式下影随测控,小S模式下定时捕获。针对Ka+小S模式下实现影随测控的可行性问题,利用STK(Satellite Tool Kit,卫星开发工具包)软件进行了仿真计算分析,结果表明:为实现影随测控,满足测控快速响应需要,要求星载S频段中继测控天线对中继卫星的覆盖范围,应大于星载中继数传天线对中继卫星的覆盖范围。  相似文献   
83.
针对经典的初轨计算方法在极短弧定轨中不适用的情况,建立了一种基于粒子群算法的极短弧(TooShort-Arc,TSA)定轨的计算方法。该方法将问题转化为两个三变量的分层优化问题,采用(a,e,M)作为优选变量,在保持问题维数较低的同时,实现了计算结果和观测资料的解耦。由于实测资料处理中的野值剔除方法不适用于粒子群算法,所以,采用稳健估计法,通过在适值函数中使用最小中值二乘准则,实现了稳健的极短弧计算方法。同时,应用MATLAB计算软件,选用缺省参数实现该算法,以进行数据验证。基于实测数据的数值验证表明,方法对于近圆轨道目标30s以下的弧段仍可以获得有效的结果,10s弧段误差仅为16km。此精度满足后续处理的需要,且方法稳健,具有很高的崩溃点。  相似文献   
84.
民航史上一起由于“货舱泄压”引发300多人丧生的空难对货舱快速泄压装置提出了技术需求。描述了现有国外民机货舱快速泄压装置的三种典型结构,并对比分析这三种结构的快速泄压装置的优缺点。基于国内某型号民机货舱快速泄压装置的研制和试验经历,提出了一套全新的货舱快速泄压装置的设计流程,并总结其设计要点,供国内民机货舱快速泄压装置设计参考。  相似文献   
85.
针对如何提高机械加工的生产效率,改进生产管理结合实际工作做了论述,提出了自己的观点。  相似文献   
86.
GPS定姿是GPS在空间飞行器上应用的一个重要方向 ,本文在建立GPS 惯性组件 太阳敏感器组合定姿系统的非线性模型的基础上 ,采用扩展卡尔曼滤波实现了该组合定姿方案。通过理论分析和仿真结果均验证了方案的可行性。为GPS定姿在空间飞行器的实际应用提供一定的参考。  相似文献   
87.
总结了产品生命周期各个阶段的快速研制技术,提出了产品全生命周期快速研制多维体系结构和“靶心”实现模型。  相似文献   
88.
微纳卫星深空探测任务中,通常所分配的测控资源有限,因此有必要对有限测控资源条件下微纳卫星的定轨精度进行分析。以微纳卫星深空探测为背景,采用"龙江2号"微卫星的轨道测量数据对其定轨精度进行了分析。"龙江2号"微卫星只有USB轨道测量数据,且环月段测控资源相对紧张,每天有两站跟踪,共约3~4 h的轨道测量数据。首先介绍了"龙江2号"微卫星飞行任务及其飞行过程中影响测定轨的因素;其次给出了定轨的动力学模型,对微卫星地月转移段的定轨精度进行了分析;最后通过分析摄动力、动量轮卸载以及数据弧段长度的影响,给出了微卫星环月阶段所使用的定轨策略,并通过重叠弧段比较的模式,给出了微卫星环月段的定轨精度。研究结论可以为后续微纳卫星深空探测任务提供有益参考。  相似文献   
89.
We present a family of empirical solar radiation pressure (SRP) models suited for satellites orbiting the Earth in the orbit normal (ON) mode. The proposed ECOM-TB model describes the SRP accelerations in the so-called terminator coordinate system. The choice of the coordinate system and the SRP parametrization is based on theoretical assumptions and on simulation results with a QZS-1-like box-wing model, where the SRP accelerations acting on the solar panels and on the box are assessed separately. The new SRP model takes into account that in ON-mode the incident angle of the solar radiation on the solar panels is not constant like in the yaw-steering (YS) attitude mode. It depends on the elevation angle of the Sun above the satellite’s orbital plane. The resulting SRP vector acts, therefore, not only in the Sun-satellite direction, but has also a component normal to it. Both components are changing as a function of the incident angle. ECOM-TB has been used for precise orbit determination (POD) for QZS-1 and BeiDou2 (BDS2) satellites in medium (MEO) and inclined geosynchronous Earth orbits (IGSO) based on IGS MGEX data from 2014 and 2015. The resulting orbits have been validated with SLR, long-arc orbit fits, orbit misclosures, and by the satellite clock corrections based on the orbits. The validation results confirm that—compared to ECOM2—ECOM-TB significantly (factor 3–4) improves the POD of QZS-1 in ON-mode for orbits with different arc lengths (one, three, and five days). Moderate orbit improvements are achieved for BDS2 MEO satellites—especially if ECOM-TB is supported by pseudo-stochastic pulses (the model is then called ECOM-TBP). For BDS2 IGSOs, ECOM-TB with its 9 SRP parameters appears to be over-parameterized. For use with BDS2 IGSO spacecraft we therefore developed a minimized model version called ECOM-TBMP, which is based on the same axis decomposition as ECOM-TB, but has only 2 SRP parameters and is supported by pseudo-stochastic parameters, as well. This model shows a similar performance as ECOM-TB with short arcs, but an improved performance with (3-day) long-arcs. The new SRP models have been activated in CODE’s IGS MGEX solution in Summer 2018. Like the other ECOM models the ECOM-TB derivatives might be used together with an a priori model.  相似文献   
90.
In order to establish a continuous GEO satellite orbit during repositioning maneuvers, a suitable maneuver force model has been established associated with an optimal orbit determination method and strategy. A continuous increasing acceleration is established by constructing a constant force that is equivalent to the pulse force, with the mass of the satellite decreasing throughout maneuver. This acceleration can be added to other accelerations, such as solar radiation, to obtain the continuous acceleration of the satellite. The orbit determination method and strategy are illuminated, with subsequent assessment of the orbit being determined and predicted accordingly. The orbit of the GEO satellite during repositioning maneuver can be determined and predicted by using C-Band pseudo-range observations of the BeiDou GEO satellite with COSPAR ID 2010-001A in 2011 and 2012. The results indicate that observations before maneuver do affect orbit determination and prediction, and should therefore be selected appropriately. A more precise orbit and prediction can be obtained compared to common short arc methods when observations starting 1 day prior the maneuver and 2 h after the maneuver are adopted in POD (Precise Orbit Determination). The achieved URE (User Range Error) under non-consideration of satellite clock errors is better than 2 m within the first 2 h after maneuver, and less than 3 m for further 2 h of orbit prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号