全文获取类型
收费全文 | 1860篇 |
免费 | 1493篇 |
国内免费 | 462篇 |
专业分类
航空 | 2691篇 |
航天技术 | 319篇 |
综合类 | 380篇 |
航天 | 425篇 |
出版年
2025年 | 18篇 |
2024年 | 48篇 |
2023年 | 63篇 |
2022年 | 65篇 |
2021年 | 78篇 |
2020年 | 75篇 |
2019年 | 85篇 |
2018年 | 98篇 |
2017年 | 132篇 |
2016年 | 147篇 |
2015年 | 131篇 |
2014年 | 160篇 |
2013年 | 184篇 |
2012年 | 263篇 |
2011年 | 261篇 |
2010年 | 229篇 |
2009年 | 264篇 |
2008年 | 210篇 |
2007年 | 200篇 |
2006年 | 168篇 |
2005年 | 122篇 |
2004年 | 106篇 |
2003年 | 96篇 |
2002年 | 78篇 |
2001年 | 53篇 |
2000年 | 65篇 |
1999年 | 50篇 |
1998年 | 35篇 |
1997年 | 43篇 |
1996年 | 47篇 |
1995年 | 41篇 |
1994年 | 31篇 |
1993年 | 33篇 |
1992年 | 27篇 |
1991年 | 34篇 |
1990年 | 23篇 |
1989年 | 27篇 |
1988年 | 17篇 |
1987年 | 4篇 |
1986年 | 4篇 |
排序方式: 共有3815条查询结果,搜索用时 15 毫秒
351.
352.
353.
进口速度分布对短突扩压器性能的影响 总被引:1,自引:0,他引:1
在任意曲线坐标系下,对环型燃烧室的三维流场进行了数值计算,研究了四种不同的进口速度分布对扩压器性能的影响。计算结果表明,进口速度大小和方向都对扩压器性能有重要影响,进口速度分布均匀以及方向贴近扩压器壁面,有利于提高扩压器的性能。计算中采用标准k-ε双方程紊流模型,采用控制容积法进行离散,在非交错网格体系下用SIMPLE法求解 相似文献
354.
航空发动机排气系统数值模拟技术的初步研究 总被引:2,自引:0,他引:2
金捷 《燃气涡轮试验与研究》2001,14(3):44-44
通过对我国航空发动机排气系统数值模拟技术研究的回顾与分析,以正在开发的排气系统气动热力分析软件包为基础,初步分析了航空发动机排气系统数值模拟技术研究的基本思路、主要模块和数据流程,并针对工程设计的实际需要,对航空发动机排气系统数值模拟技术的研究提出了建议。 相似文献
355.
356.
采用数值模拟和理论分析相结合的方法,研究了前缘剖面形状对双三角翼涡运动的影响,分析了前缘剖面形状对三角翼、双三角翼涡运动影响的不同机理 :对三角翼,尖前缘可以形成组织最好的涡结构,但对于双三角翼,圆前缘生成的旋涡结构较靠近翼面,涡结构紧密,诱导能力较强,可以形成有利的涡涡干扰,使内翼涡通过剪切层向外翼涡输入涡量更加容易,合并涡变得更加稳定,推迟了涡破裂,而且由于涡较靠近翼面,因而可以产生较高的非线性涡升力,这同传统的认识是不一致的。 相似文献
357.
358.
基于求解N-S方程的VOF方法,引入Schnerr-Sauer空化模型、SST k-ω湍流模型和6DOF刚体运动模型,通过重叠网格技术建立两发射弹齐射出水的数值计算模型,并进行了数值方法的有效性验证。研究了不同发射无量纲时差下射弹齐射出水过程的超空泡演化特性、射弹的弹道轨迹、偏转角变化和减阻性能,分析了超空泡流场的干扰机理。研究结果表明:同步发射出水时,射弹超空泡内侧扩张受到抑制,在出水阶段超空泡发生了非对称性溃灭;两射弹的弹道稳定性较差,其偏转角的最大值达到了3.1°;对于异步发射出水,首发射弹超空泡前沿轮廓基本对称,而次发射弹超空泡前沿轮廓内侧壁面发生膨胀,失去了对称性,随着发射时差的增大,次发射弹超空泡内侧前沿轮廓曲率变小。首发射弹在出水过程中能维持良好的弹道稳定性,次发射弹在压差作用下向内侧偏转,运动轨迹也向内侧偏移,运动过程中次发射弹的最大无量纲水平位移和最大偏转角随发射时差的增大而减小。相比异步发射出水,同步发射条件下射弹的无量纲竖直速度衰减略快。 相似文献
359.
粉末火箭发动机燃烧室燃烧流动特性研究 总被引:5,自引:0,他引:5
选取颗粒轨道模型,对Al/AP粉末颗粒在粉末火箭发动机内流动和燃烧进行三维数值模拟,为以Al粉末燃料和AP粉末氧化剂作为推进剂的新型燃烧室的设计以及实验研究提供参考。文中提出了一种粉末火箭发动机构型,通过对发动机燃烧室进行冷态和热态数值模拟,研究了氧燃比、Al粉末颗粒大小、燃烧室体积等因素对粉末火箭发动机燃烧室燃烧性能的影响。结果表明,一定范围内氧燃比较高时,燃烧室温度反而较低;较小粉末颗粒在燃烧室内更易离散;Al颗粒粒径越小越易燃烧,Al燃烧率也越高;验证了在Al/AP粉末火箭发动机的设计中引入特征长度来匹配Al粉粒径与燃烧室体积的合理性。 相似文献
360.