首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   71篇
  国内免费   65篇
航空   204篇
航天技术   276篇
综合类   19篇
航天   206篇
  2024年   3篇
  2023年   13篇
  2022年   5篇
  2021年   20篇
  2020年   27篇
  2019年   32篇
  2018年   29篇
  2017年   17篇
  2016年   14篇
  2015年   27篇
  2014年   58篇
  2013年   36篇
  2012年   46篇
  2011年   62篇
  2010年   35篇
  2009年   34篇
  2008年   30篇
  2007年   29篇
  2006年   36篇
  2005年   28篇
  2004年   17篇
  2003年   16篇
  2002年   14篇
  2001年   17篇
  2000年   18篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   1篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
排序方式: 共有705条查询结果,搜索用时 31 毫秒
701.
The Adaptive Gaussian Mixtures Unscented Kalman Filter (AGMUKF) is introduced to estimate the attitude of a Resident Space Object using light curves. This filter models the state probability density function as a Gaussian Mixture. This enables to capture the non-linearities of the light-curve measurement model. A non-linearity index is used to refine the mixture when necessary, and individual Gaussian kernels are merged back together when their relative distance is below a certain threshold. A conventional attitude Unscented Kalman Filter (UKF) is used to propagate and update each kernel. The AGMUKF efficiently maintains the mixture population as low as possible, while still being able to represent non-symmetric, multimodal, arbitrarily complex distributions. Therefore, it is presented as a promising alternative to Particle-Filter-based implementations, the current state of the art used in sequential attitude estimation from light curves. The non-linearity index has been used to show that the measurement model is the main contributor to the system non-linearity. Results have demonstrated the superiority of the AGMUKF w.r.t. the UKF for attitude determination, and that it can converge for high initial state uncertainty cases, successfully capturing the non-Gaussian probability distribution of the state.  相似文献   
702.
Global navigation satellite system (GNSS)-based attitude determination has been widely adopted in a wide variety of terrestrial, sea, air, and space applications. Recently, the emergence of commercial multi-GNSS common-clock receivers has brought new opportunities for high-precision GNSS-based attitude determination with single-differenced (SD) model. However, the key requirement of using this approach is the accurate estimation of the troublesome line bias (LB) in real-time. In this contribution, we propose a particle filter-based real-time phase LB estimation approach that apply to SD model with single-system single-frequency observations from common-clock receiver. We first analyzed the relationship between the integer ambiguity ratio value and the phase LB. It is proved that the accuracy of a given phase LB value can be qualified by the related ambiguity resolution ratio value, and the normalized ratio value can therefore be used to represent the likelihood function of observations. Then, we presented the particle filter-based real-time phase LB estimation procedure, and assessed its performance using GPS L1/BDS B1I observations from two datasets collected with different types of common-clock receivers in terms of the accuracy and convergence time of phase LB estimation, the computation load, and the positioning and attitude determination accuracy with respect to the double-differenced (DD) model. Experimental results demonstrated that the phase LB could be accurately estimated with short convergence time (generally within 15 epochs). Moreover, compared with the classical DD approach, the particle filter-based SD approach delivers comparable positioning root-mean-square (RMS) errors in the North and East components but significantly smaller RMS errors in the Up component. Accordingly, the achievable yaw accuracy is comparable whereas the pitch accuracy is remarkably improved. The improvements of positioning accuracy in the Up component and pitch accuracy are approximately 35.7 % to 63.7 %, and 33.3 % to 63.1 %, respectively. Additionally, the single-epoch computation time with our particle filter-based SD approach is generally 0.08 s, which is obviously larger than the DD approach but could still meet the requirements of real-time applications below 10 Hz sampling.  相似文献   
703.
初始轨道是航天器入轨评价的关键判据,快速准确计算初始轨道可在入轨异常时为应急救生控制赢得时间。针对传统初始轨道计算方法时间与精度不能兼顾的问题,设计了初始轨道快速计算策略,根据运载火箭加速度变化率来判断舱箭分离时间,采用基于动力学约束的实时轨道滑动批处理方法累积超短弧分离后数据计算初始轨道,对利用各种数据源确定的多组初始轨道进行逻辑优选判断。通过梦天试验舱仿真数据验证表明:使用该策略计算初始轨道,可达到事后精密定轨同等精度,计算时间控制在1 min以内,时效性远超事后精密轨道确定方法。  相似文献   
704.
705.
在卫星导航系统动态定位中,采用基于瞬时多普勒观测量的最小二乘法确定速度,当载体高机动时,多普勒误差迅速增大,从而导致测速精度大幅度降低。针对该问题,提出一种同时实现动态模型自适应修正和观测模型自适应更新的Kalman滤波算法。算法采用滑动窗方式来建立实时更新的动态模型参数,使当前统计模型自适应地跟踪载体的动态特性。此外,算法提出观测模型的自适应更新方法,通过设置载体状态判决门限,高、中机动时仅进行受动态应力影响小的伪距更新,低机动下添加精度较高的伪距率更新。通过Sprient GSS8000模拟器产生的动态场景验证表明,相对于最小二乘法和常规Kalman滤波算法,提出的自适应Kalman滤波算法能够全面提高载体在多种运动状态下的测速精度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号