首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   51篇
  国内免费   129篇
航空   495篇
航天技术   26篇
综合类   81篇
航天   10篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   17篇
  2020年   20篇
  2019年   14篇
  2018年   15篇
  2017年   32篇
  2016年   33篇
  2015年   21篇
  2014年   34篇
  2013年   35篇
  2012年   41篇
  2011年   65篇
  2010年   40篇
  2009年   27篇
  2008年   29篇
  2007年   22篇
  2006年   16篇
  2005年   14篇
  2004年   8篇
  2003年   4篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1997年   12篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   13篇
  1992年   5篇
  1991年   3篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
排序方式: 共有612条查询结果,搜索用时 62 毫秒
111.
为研究重型燃气轮机的压气机叶片在高雷诺数工况下的气动性能,基于Gamma-Theta转捩模型的雷诺时均方程对某可 控扩散叶型进行了数值计算。通过对比不控制马赫数与控制马赫数,分析高雷诺数对可控扩散叶型气动性能及转捩特性的影响。 结果表明:在不控制马赫数条件下,在零攻角时,雷诺数从7×10 5 增大为9×10 5 ,总压损失增加了约391.95%;在高雷诺数工况下随 着雷诺数的增大,叶片流动损失不断增大,叶片可用攻角范围减小,同时在叶片吸力面出现激波,干扰转捩的产生。在控制马赫数 条件下,当Ma=0.6时,在零攻角工况下,雷诺数从8.2×10 5 增大为1×10 7 ,总压损失减小了约38.98%,吸力面转捩起始点从4.78%弦 长处前移至1.11%弦长处;在高雷诺数工况下,叶片流动损失随着雷诺数的增大不断减小,吸力面转捩位置前移。  相似文献   
112.
低雷诺数高升力翼型的设计和实验研究   总被引:3,自引:0,他引:3  
在翼型上表面的恢复区内采用修改后的Stratford理论的压力分布,然后应用Weber已知力分布求解翼型有的理论设计一 套在低雷诺数的新翼型。  相似文献   
113.
折叠机翼变体飞机变形量大,变形引起的气动参数变化显著,提出一种将非对称变形作为操纵输入的控制方案,研究非对称变形的控制效率和有效区间。首先建立能够完整描述变形过程的非线性动力学方程和气动力模型;然后基于非对称变形控制方法建立一种非对称变形操纵模型;最后通过与常规操纵面效率对比和仿真的动态响应总结出非对称变形操纵的最大变形操纵有效区间。结果表明:在较低飞行速度下非对称变形操纵效率高,非对称变形操纵能够在基准折叠角度90°附近提供最高的滚转操纵效率。  相似文献   
114.
跨声速层流翼型的混合反设计/优化设计方法   总被引:1,自引:1,他引:0  
陈静  宋文萍  朱震  许朕铭  韩忠华 《航空学报》2018,39(12):122219-122219
跨声速层流翼型设计须兼顾优良的超临界特性和自然层流特性,因而对设计方法提出了更高的要求。针对现有反设计方法和直接优化设计方法的不足,发展了一种适用于跨声速层流翼型的混合反设计/优化设计方法。该方法引入了基于经验的局部流场特征作为反设计目标,翼型性能指标作为直接优化设计目标,然后加权形成了混合反设计/优化设计总目标,并同时考虑了气动和几何约束。优化算法采用基于自适应并行加点技术的代理优化,流动数值模拟采用耦合基于线性稳定性理论的eN转捩自动判定的雷诺平均Navier-Stokes(RANS)方程求解器。针对现代中短程民用客机需求,以NPU-LSC-72613翼型为基准,开展了层流翼型减阻的混合反设计/优化设计。分别将局部目标压力分布、总阻力作为反设计和直接优化设计目标,得到了较好的优化结果,验证了方法的有效性。经过2轮优化结果显示混合反设计/优化设计总目标显著下降。所设计翼型吸力面局部压力分布与目标压力分布基本一致,总阻力下降15.5%;吸力面和压力面层流范围均大于55%倍弦长,激波强度显著减弱,说明所设计翼型同时具有优良的超临界和层流特性。将所设计翼型配置到机翼上,通过三维数值模拟进行校验,结果显示所设计跨声速层流机翼升阻比提高了6.64%,在一定升力系数范围内,气动性能均有显著提高,验证了所设计跨声速层流翼型在机翼设计中的适用性。  相似文献   
115.
离散涡方法(DVM)是一种无网格的涡运动算法,适用于解决易产生分离流的非定常问题,将其应用于结冰过程中的流场求解,在有效模拟分离流动的同时能避免冰形尖角对网格质量的影响。但离散涡方法基于不可压 N-S 方程,无法应用于预测可压缩流动下的结冰过程。本文在离散涡方法的基础上添加普朗特—格劳尔特压缩性修正,进行基于离散涡方法的可压缩流动下的数值模拟,并将其应用于翼型结冰预测;对流场分布、结冰冰形和结冰模型计算过程等仿真结果进行对比和分析。结果表明:引入压缩性修正后的离散涡方法能较好地模拟可压缩流动,与实验值相比,基于该方法得到的结冰数值模拟结果符合良好,对结冰数值模拟在工程上的应用提供了一定的参考。  相似文献   
116.
基于雷诺平均Navier-Stokes方程的表面传热系数计算   总被引:1,自引:1,他引:0  
侯硕  曹义华 《航空动力学报》2015,30(6):1319-1327
采用有限体积法数值求解控制二维绕流的雷诺平均Navier-Stokes(RANS)方程组,计算了光滑和粗糙NACA0012翼型以及圆柱表面的局部表面传热系数.分析了近壁面网格间距、湍流模式和表面粗糙度模型对数值计算结果的影响.结果表明:切应力输运(SST)湍流模型能够区分层流和湍流边界层的对流传热特性,并能预测转捩的发生;采用Spalart-Allmaras(S-A) 扩展模型能够计算粗糙壁面的对流传热系数,但采用忽略转捩函数的S-A模型不能有效计算层流边界层的传热系数.当近壁面网格间距接近10-5量级的黏性子层时,在光滑和粗糙壁面都能得到准确的传热系数分布.结合合适的近壁面网格间距,湍流模式和表面粗糙度模型可以得到与实验数据十分接近的表面传热系数曲线.通过与求解不可压缩RANS方程得到的结果比较后发现,不可压缩RANS方程主要忽略了压缩和黏性耗散效应,这种效应可以通过绝热升温项的形式并入总体热分析.   相似文献   
117.
翼型前缘变形对动态失速效应影响的数值计算   总被引:1,自引:1,他引:0  
卢天宇  吴小胜 《航空学报》2014,35(4):986-994
翼型或机翼的动态失速效应所引起的低头力矩和正气动阻尼限制了飞行器气动性能的提高,甚至可能诱导发生不稳定运动。应用于小尺寸机翼的前缘动态变形(DDLE)技术,通过实时改变前缘形状,能够改善翼型前缘区域的速度梯度,进而抑制动态失速效应。采用转捩剪切应力输运(SST)黏性模型结合分区混合动态网格技术,研究了这种前缘变形对机翼俯仰运动所引起的非定常流动的影响,得到通过小幅度前缘变形抑制和延迟动态失速的方法,从而提高翼型的气动性能。翼型NAC A0012的数值模拟结果与动态失速风洞试验结果比较表明:所使用的数值计算方法能够较为准确地模拟翼型在动态失速过程中升力系数与俯仰力矩系数的变化情况,可用于研究前缘变形对翼型俯仰运动所引起的非定常流动的影响。前缘动态变形翼型俯仰运动过程的非定常流场的数值模拟表明:在大迎角下不同幅度的前缘下垂运动能够抑制流动分离的发生,从而抑制动态失速,但在大迎角下小幅度高频率的前缘下垂变形能更高效地抑制动态失速;前缘变形幅度以及变形沿中弧线的分布对升力系数和俯仰力矩系数的影响并不明显。  相似文献   
118.
为研究翼型结冰状态下的载荷变化规律,对翼型进行测力实验.研制一台三分量翼型测力天平.天平设计的突出难点为设计载荷极不匹配,阻力测量载荷很小.设计时,针对翼型载荷的特点,采用片梁组合方式测量阻力,四柱梁测量法向力及俯仰力矩,并采用有限元方法对结构进行了验证计算.主要介绍天平的设计、校准及应用情况.  相似文献   
119.
不同迎角的翼型气弹特性风洞实验研究   总被引:1,自引:0,他引:1  
基于可在不同迎角下作沉浮、俯仰两自由度运动的翼段振动装置,在低速风洞中分别针对普通薄翼型NA-CA0012和风力机翼型NREL S809进行气动弹性测试,得到不同实验状态的气动弹性振动时域响应。分别观察到经典颤振和失速颤振现象,并证明了迎角改变对两种翼型颤振特性的影响。  相似文献   
120.
大型水陆两栖飞机翼型优化设计   总被引:1,自引:1,他引:0  
对大型水陆两栖飞机翼型进行了数值优化设计研究,通过以翼型设计升力系数下的阻力系数最小化为设计目标和以翼型低头力矩、最大升力系数、失速后升力系数下降率作为约束条件的大型水陆两栖飞机翼型优化设计,在满足翼型相对厚度、最大厚度位置、最大弯度、最大弯度位置符合相应设计范围的情况下,得到了综合性能较基本翼型提高的新翼型.该设计方法适用于大型水陆两栖飞机的翼型设计,是一种符合工程应用实际的数值优化设计方法.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号