首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4635篇
  免费   808篇
  国内免费   721篇
航空   3338篇
航天技术   1022篇
综合类   559篇
航天   1245篇
  2024年   31篇
  2023年   123篇
  2022年   175篇
  2021年   227篇
  2020年   243篇
  2019年   245篇
  2018年   210篇
  2017年   215篇
  2016年   261篇
  2015年   234篇
  2014年   375篇
  2013年   268篇
  2012年   321篇
  2011年   369篇
  2010年   252篇
  2009年   247篇
  2008年   297篇
  2007年   289篇
  2006年   247篇
  2005年   233篇
  2004年   208篇
  2003年   179篇
  2002年   131篇
  2001年   127篇
  2000年   95篇
  1999年   91篇
  1998年   96篇
  1997年   63篇
  1996年   38篇
  1995年   42篇
  1994年   36篇
  1993年   41篇
  1992年   35篇
  1991年   29篇
  1990年   28篇
  1989年   32篇
  1988年   22篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
排序方式: 共有6164条查询结果,搜索用时 12 毫秒
211.
A study of the evolution of the periodic and the quasi-periodic orbits near the Lagrangian point L2, which is located to the right of the smaller primary on the line joining the primaries and whose distance from the more massive primary is greater than the distance between the primaries, in the framework of restricted three-body problem for the Sun–Jupiter, Earth–Moon (relatively large mass ratio) and Saturn–Titan (relatively small mass ratio) systems is made. Two families of periodic orbits around the smaller primary are identified using the Poincaré surface of section method – family I (initially elliptical, gradually becomes egg-shaped with the increase in the Jacobi constant C and elongated towards the more massive primary) and family II (initially egg-shaped orbits elongated towards L2 and gradually becomes elliptical with the increase in C). The family I in the Sun–Jupiter and Saturn–Titan systems contains two separatrix caused by third-order and fourth-order resonances, while the Earth–Moon system has only one separatrix which is caused by third-order resonances. Also in the Sun–Jupiter and the Saturn–Titan systems, family I merge with family II, around Jacobian constant 3.0393 and 3.0163, respectively, while in the Earth–Moon system, family II evolves separately from two different branches. The two branches merge at C = 3.184515. In the Earth–Moon system, the family II contains a separatrix due to third-order resonances which is absent in the other two systems.  相似文献   
212.
The analytical methods have nearly been replaced by the numerical methods due to their higher accuracy and accessibility of computation facilities. The semi-analytical Lagrange method of orbit propagation using f and g series is a competitive alternative to the numerical integration technique if the Lagrange coefficients are derived in a full gravitational field. In this paper, a generalization of the Lagrange method of orbit propagation is introduced. In other words, we introduce a complete form of the Lagrange coefficients in all force fields developed in the spherical harmonics for example full gravitational field of the Earth. The method is numerically compared with the numerical integration technique. In order to show the numerical performance of the method, it has been implemented for orbit propagation of a GPS-like MEO and CHAMP-like LEO satellites. Discrepancy at centimeter level for CHAMP-like and sub-millimeter accuracy for GPS-like satellites shows relatively high performance of the developed algorithm. Compared to integration method, the proposed Lagrange method is nearly faster by a factor two for small Nmax and four for large Nmax.  相似文献   
213.
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by  and  are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively.  相似文献   
214.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   
215.
基于民机的适航要求,建立了一种基于数字虚拟飞行的侧风着陆地面航向操稳特性评估方法。以着陆滑跑过程中最大机体倾斜角和最大航迹偏移量作为评估的关键参数,依据人机闭环数字飞行仿真计算结果,评估了某大型水陆两栖飞机侧风着陆任务的地面航向操稳特性适航符合性。对于20 kts侧风分量,算例飞机着陆滑跑的机身最大机体倾斜角为3.44°,最大侧向航迹偏差为2.51 m,能够满足适航要求。进一步研究表明,侧风分量大小、道面污染情况均影响侧风着陆的安全性。在干道面上当侧风分量超过30 kts时即会出现地面打转现象;道面污染增加滑跑减速所消耗的跑道长度,同时不利于驾驶员对滑行航向的控制。所提评估方法可应用于民机的概念和方案设计阶段,并为后续开展飞行试验验证等提供理论参考。   相似文献   
216.
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously.  相似文献   
217.
Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50–70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40–60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.  相似文献   
218.
The astrophysical parameters have been estimated for two unstudied open star clusters Teutsch 10 and Teutsch 25 using the Two Micron All Sky Survey (2MASS) database. Radius is estimated as 4.5 arcmin for both clusters using radial density profiles. We have estimated proper motion values in both RA and DEC directions as 2.28±0.3 and -0.38±0.11?mas?yr?1 for Teutsch 10 and 0.48±0.3 and 3.35±0.16?mas?yr?1 for Teutsch 25 using PPMXL1 catalog. By estimating the stellar membership probabilities, we have identified 30 and 28 most likely members for Teutsch 10 and Teutsch 25 respectively. We have estimated the reddening as E(B-V)=0.96±0.3?mag for Teutsch 10 and 0.58±0.2?mag for Teutsch 25, while the corresponding distances are 2.4±0.2 and 1.9±0.1?kpc. Ages of 70±10?Myr for Teutsch 10 and 900±100?Myr for Teutsch 25 are estimated using the theoretical isochrones of metallicity Z?=?0.019. The mass function slopes are derived as 1.23±0.30 and 1.09±0.35 for Teutsch 10 and Teutsch 25 respectively. Estimated mass function slope for both the clusters are close to the Salpeter value (x=1.35) within the errors. Estimated values of dynamical relaxation time are found to be less than cluster’s age for these objects. This concludes that both objects are dynamically relaxed. The possible reason for relaxation may be due to dynamical evolution or imprint of star formation or both.  相似文献   
219.
Performance of SARAL/AltiKa mission has been evaluated within 2016 altimeter calibration/validation framework in Persian Gulf through three campaigns conducted in the offshore waters of Sajafi, Imam Hassan and Kangan Ports, while the altimeter overflew the passes 470, 111 and 25 on 13 Feb, 7 March and 17 June 2016, respectively. As the preparation, a lightweight buoy was equipped with a GNSS receiver/choke-ring antenna and a MEMS-based IMU to measure independent datasets in the field operations. To obtain accurate sea surface height (SSH) time series, the offset of the onboard antenna from the equilibrium sea level was predetermined through surveying operations as the buoy was deploying in the onshore waters of Kangan Port. Accordingly, the double-difference carrier phase observations have been processed via the Bernese GPS Software v. 5.0 so as to provide the GNSS-derived time series at the comparison points of the calibration campaigns, once the disturbing effects due to the platform tilt and heave have been eliminated. Owing to comparing of the SSH time series and the associating altimetry 1?Hz GDR-T datasets, the calibration/validation of the SARAL/AltiKa has been performed in the both cases of radiometer and ECMWF wet troposphere corrections so as to identify potential land contamination. An agreement of the present findings in comparison with those attained in other international calibrations sites confirms the promising feasibility of Persian Gulf as a new dedicated site for calibration/validation of ongoing and future altimetry missions.  相似文献   
220.
This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15?mm deep into granite rock in 180?s at sawing angle of 60°, with the average power of 58.41?W, and the “weight on bit” (WOB) of 8.637?N. The 7.8?kg anchoring system is capable of providing omni-directional anchoring forces, at least 225?N normal and 157?N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号