首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   73篇
  国内免费   41篇
航空   264篇
航天技术   28篇
综合类   23篇
航天   57篇
  2024年   1篇
  2023年   4篇
  2022年   12篇
  2021年   10篇
  2020年   13篇
  2019年   8篇
  2018年   13篇
  2017年   21篇
  2016年   22篇
  2015年   18篇
  2014年   26篇
  2013年   20篇
  2012年   25篇
  2011年   24篇
  2010年   15篇
  2009年   23篇
  2008年   19篇
  2007年   28篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
排序方式: 共有372条查询结果,搜索用时 15 毫秒
271.
自适应流通处理机匣喷气位置对压气机性能的影响   总被引:1,自引:0,他引:1  
采用数值模拟方法研究了跨声风扇转子Rotor 67的失速机理和3个喷气位置的自适应流通处理机匣对转子性能的影响.结果表明:叶顶间隙泄漏涡中低速团是诱发失稳的主要原因;3个喷气位置的处理机匣均增大了压气机的稳定工作范围,喷气位置居中和后移的处理机匣综合稳定裕度改进量分别为13.43%,9.47%,均大于前移的2.72%;喷气位置居中和后移有利于抑制间隙泄漏流的发展,减小低能流体泄漏范围;相比前移和居中,后移不能激励压力面前缘处的低速团和抑制低能流体从叶顶前部泄漏.   相似文献   
272.
喷管对旋转爆震发动机性能影响的实验   总被引:4,自引:2,他引:4  
高剑  马虎  裴晨曦  武晓松  徐灿 《航空动力学报》2016,31(10):2443-2453
为了研究喷管对旋转爆震发动机(RDE)性能的影响,设计了RDE推力测试台,RDE环形燃烧室的内径和外径分别为70mm和80mm,长度为40mm,以氢气和空气分别作为燃料和氧化剂,采用环缝-喷孔对撞式掺混方式,使用高能火花塞点火,并用压电式压力传感器测量推力,实验研究在燃烧室出口安装收敛喷管、扩张喷管以及拉瓦尔喷管对发动机工作性能的影响.结果表明,入口总质量流量小于0.126kg/s时,在发动机稳定工作的工况范围内,收敛喷管对发动机推进性能的提高最为明显.爆震波的传播速度及RDE的推进性能随着入口质量流量的增大而逐渐提高,而当量比则存在一个最佳值,使爆震波的传播速度及RDE的推力达到最大.基于混合物的比冲最高能够达到95.21s.   相似文献   
273.
针对某二冲程点燃式空气辅助缸内直喷煤油发动机,设计了冷起动控制策略.利用自主研发的电控单元,在4℃环境下通过试验验证了该策略正确性,并在14℃左右环境下研究了关键参数对冷起动性能影响,结果表明:点火提前角对起动阶段后期影响较大,起动成功后点火提前角为上止点前40°时暖机效果最好.采用饱和点火能量策略,冷起动性能最好,暖机平均转速最高,转速波动最小;起动喷油脉宽修正系数大于25时有利于改善起动阶段动力性,转速增加率大,起动喷油脉宽修正系数在25至45间冷起动过程基本一致.上止点前40°~60°的喷气结束角有利于冷起动成功,适度提前喷气结束角可加快暖机过程.油气间隔直接影响油气雾化效果,6ms油气间隔冷起动性能最佳,其作用主要体现在拖动和起动阶段.   相似文献   
274.
进气角与注水规律对燃气-蒸汽弹射的影响   总被引:1,自引:1,他引:1  
为了研究弯管进气角和注水规律对燃气-蒸汽弹射过程中流场和内弹道的影响,采用Mixture多相流模型,Renormalization group (RNG) k-ε湍流模型和动网格技术,建立了燃气-蒸汽弹射数值模型.通过与文献数据的对比,验证了数值方法的可靠性,分析了注水规律与弯管进气角度对燃气-蒸汽弹射过程流场和内弹道的影响.研究结果表明:当弯管进气角为60°时,燃气-蒸汽介质的能量能得到最大利用,发射筒内的温度分布较均匀;另外在同样的注水量下,缓慢注水导弹出筒时间相对较短,但波动较大;快速注水导弹运动平稳,但出筒时间较长.结果可为导弹燃气-蒸汽弹射动力系统的设计提供参考.   相似文献   
275.
基于FEM-PIM计及热效应的统计能量分析   总被引:1,自引:0,他引:1  
结合有限元法(FEM)和模态坐标系下计及热效应的功率输入法(PIM),给出一种热环境下适用于复杂结构的统计能量分析方法.以各边简支的L型折板为研究对象,开展雨流载荷作用下的数值模拟验证方法的准确性.开展3种工况条件下热效应对统计能量分析参数的影响研究:①仅考虑热效应引起的材料力学性能变化;②仅考虑热应力引起的附加刚度效应;③同时考虑考虑两者影响.结果表明:温升影响材料力学性能的同时会导致耦合损耗因子减小,但对内损耗因子的影响不大;热应力引起的附加刚度效应对内损耗因子和耦合损耗因子的影响较大,两者均随温度的升高而逐渐减小;同时考虑两者影响时,热应力对统计能量分析参数的影响占主导地位,内损耗因子和耦合损耗因子均随温度的升高而逐渐减小;模态密度与温度的变化趋势基本一致.   相似文献   
276.
反向双旋涡流器受限火焰特性的流场分析   总被引:1,自引:1,他引:1  
曾青华  孔文俊 《航空动力学报》2016,31(12):2888-2894
分析了反向双旋涡流器受限燃烧火焰特性所对应的流场结构特征.研究发现:反向双旋涡流器流场结构随着受限比变化而发生变化.在受限比小于3.8时,流场上中心回流泡随着受限比增大而变长,与单级旋流涡流器流场上中心回流泡的生长规律相同;但受限比的继续增大,反向双旋涡流器流场上中心回流泡的生长则表现出不同于单级旋流涡流器的规律.单级旋流涡流器流场上中心回流泡会继续生长变长,而反向双旋涡流器流场上中心回流泡会在中间某位置出现分裂,呈现出前后两个不同的回流泡.该研究结果深化了对受限程度影响流动和燃烧的物理机制的认识,同时为反向双旋涡流器的优化设计提供指导.  相似文献   
277.
为分析小支板前/后喷射在超声速燃烧室中的流动特性,运用数值模拟方法研究了小支板对乙烯喷射冷流场的作用规律.对比分析了有无小支板、不同喷射位置、不同喷射角对流场的影响.研究发现小支板增强掺混的机制主要在于在小支板后端形成了流向涡与低压区;在一定范围内,喷孔距离支板尾部越远越处于湍流强度较大的流向涡中,更有利于掺混增强,但同时也距离小支板后缘的低压区更远,这将导致总压损失变大;综合考虑,小支板与喷孔的距离为2.2d,喷射角为90°时燃料穿透深度、混合效率较好,总压损失也相对较小.   相似文献   
278.
对涡轮基组合循环(Turbine Based Combined Cycle, TBCC)发动机涡轮进气道进行喷水冷却是解决TBCC发动机推力不连续问题的有效方式之一。本文基于实际流场条件选取某型TBCC发动机涡轮进气道结构,对进气道内喷水冷却特性进行了数值仿真,研究飞行器不同工况下水滴的蒸发特性及喷水对来流高温空气的预冷效果。结果表明,来流空气温度降幅随水气比提高而增大,最高温降可达152.4K。水气比提高后水滴蒸发率逐渐降低,但蒸发总量仍会继续上升。相同水气比条件下,飞行马赫数越高,喷水冷却效果越明显。在Ma3.5飞行速度和水气比0.03条件下有最高蒸发率,达83.05%。喷水冷却有效扩展了涡轮模态飞行马赫数,最高能使飞行速度提升至Ma2.84,即喷水冷却扩展了TBCC从涡轮模态向超燃冲压模态转换的衔接速域。  相似文献   
279.
为了探索叶顶喷气在亚声速轴流压气机中的设计规律,试验研究了喷气量、喷嘴喉部高度、周向覆盖比例、喷气位置、喷嘴数目、喷嘴分布形式对压气机失速裕度的影响规律,分析了叶顶喷气的扩稳机理以及对压气机失速特性的影响,总结了叶顶喷气在亚声速和跨声速压气机中作用规律的异同。研究结果表明,叶顶喷气没有改变压气机的失速特性,其扩稳机理主要在于对叶顶堵塞的有效抑制,通道堵塞对叶顶喷气的非定常响应是离散叶顶喷气有效扩稳的重要原因。当喷嘴处于堵塞状态时扩稳效果达到最大,利用0.66%的喷气量可将压气机的失速裕度提升15%。对于压气机失速裕度的影响,喷气量、喷嘴喉部高度、喷气周向覆盖比例间存在交互作用,喷气位置、喷嘴周向分布形式和进气畸变对喷气扩稳效果的影响均不大。当压气机的失速均是由叶顶泄漏涡诱发的突尖失速时,叶顶喷气在亚声速压气机中的设计方法可用于指导跨声速压气机叶顶喷气的设计。  相似文献   
280.
涡轮叶尖间隙泄漏流动主动控制数值模拟   总被引:5,自引:9,他引:5  
结合基于压力修正的雷诺应力湍流模型加壁面函数的三维计算流体力学程序,对某一轴流涡轮转子采用叶尖间隙射流主动控制对泄漏流场的影响进行了数值模拟.结果表明:在涡轮叶尖表面选择合适射流孔位置进行射流可以提高涡轮转子效率,其中大间隙下通过射流孔组合射流可以提高涡轮效率0.35%,小间隙下可以提高0.3%;在射流孔区域靠近叶片表面处流场结构中鞍点数和结点数相等,满足奇点总数规律.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号