首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1454篇
  免费   312篇
  国内免费   238篇
航空   1256篇
航天技术   315篇
综合类   150篇
航天   283篇
  2024年   2篇
  2023年   19篇
  2022年   49篇
  2021年   71篇
  2020年   72篇
  2019年   70篇
  2018年   69篇
  2017年   75篇
  2016年   75篇
  2015年   57篇
  2014年   92篇
  2013年   86篇
  2012年   107篇
  2011年   112篇
  2010年   129篇
  2009年   127篇
  2008年   106篇
  2007年   120篇
  2006年   85篇
  2005年   66篇
  2004年   54篇
  2003年   42篇
  2002年   47篇
  2001年   31篇
  2000年   35篇
  1999年   25篇
  1998年   26篇
  1997年   25篇
  1996年   18篇
  1995年   23篇
  1994年   14篇
  1993年   13篇
  1992年   19篇
  1991年   8篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   3篇
  1984年   3篇
排序方式: 共有2004条查询结果,搜索用时 359 毫秒
801.
针对低展弦比涡轮叶栅端壁区亚声速流动及换热,采用基于线性涡黏假设的V2F模型开展了数值模拟.结果表明:涡轮叶栅流动中存在马蹄涡、通道涡、压力侧角涡、吸力侧角涡等多种复杂涡系结构,其中马蹄涡与通道涡是涡轮叶栅二次损失的主要来源.端壁换热与马蹄涡及通道涡强度及位置直接相关,并呈现明显的分区特征.端壁极限流线结果显示,V2F模型模拟的端壁单马蹄涡分离线与实验结果吻合,优于SST (shear stress transport)k-ω模型模拟的端壁双马蹄涡分离线.V2F模型引入了新的湍流尺度,在马蹄涡及通道涡位置、端壁静压损失系数分布、叶栅出口总压损失分布及端壁Standon数分布等方面均与实验结果吻合较好,对叶栅气动损失及端壁换热有良好的预测能力.  相似文献   
802.
《中国航空学报》2016,(3):630-638
Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications.However,the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments.In this paper,an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber.Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm~2 to 311.45 W/cm~2,volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h.Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed;results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.  相似文献   
803.
为探究航空发动机燃油管路内流动及换热特性,建立发动机外部U形燃油管路含水燃油离散相模型(DPM)进行数值模 拟。结果表明:体积含水率(≤10%)越高,U形管全管段的压降梯度越大,换热系数越高;流动分离、迪恩涡、离心力作用和油水两 相相互作用导致流动阻力增大,是弯管段压降梯度明显大于一般直管的主要原因。不同流量条件下:迪恩涡引起的燃油横向输运 和二次流流速分布对弯管段的周向换热不均现象影响较大,弯管内、外侧的换热系数大小关系可以根据弯管段迪恩数判定。环境 温度不变,流量越大,U形管全管段压降越高,沿程换热系数越大,且含水率越高,流量对压降梯度的影响越明显;流量不变,环境 温度越低,U形管全管段压降越高,沿程换热系数越小。  相似文献   
804.
本文研究卫星轨道圆化的点火控制策略,发动机推力为有限常值,方向可调。考虑了燃料消耗引起的质量损失。假设圆轨道上有一飞行器在运动,称为虚拟轨道器。只要卫星与虚拟轨道器软交会,就完成了轨道圆化。文中给出了使卫星与虚拟轨道器软交会的推力方向控制策略和点火位置与关车位置的求取方法。仿真结果表明,本文方法与水平推力策略和切向推力策略相比,具有更高的控制精度,而且燃料消耗接近最优。  相似文献   
805.
AOTV的极小时间控制   总被引:2,自引:0,他引:2  
  相似文献   
806.
图像处理作为成像链路的重要组成部分,是系统优化设计不得不考虑的一个环节,其中调制传递函数补尝(MTFC)是当今研究的热点,在遥感成像系统优化设计中发挥着重要作用。如果综合应用地面MTFC的能力,对遥感器进行优化设计,则可以大大减轻遥感器的研制难度、节约成本和缩短研制周期。该文对MTFC在光学遥感成像系统优化设计中的应用进行了一些探讨。  相似文献   
807.
MTFC在光学遥感成像系统优化设计中的应用研究   总被引:1,自引:0,他引:1  
图像处理作为成像链路的重要组成部分,是系统优化设计不得不考虑的一个环节,其中调制传递函数补尝(MTFC)是当今研究的热点,在遥感成像系统优化设计中发挥着重要作用。如果综合应用地面MTFC的能力,对遥感器进行优化设计,则可以大大减轻遥感器的研制难度、节约成本和缩短研制周期。该文对MTFC在光学遥感成像系统优化设计中的应用进行了一些探讨。  相似文献   
808.
任川  吴清松 《宇航学报》2007,28(3):740-746
蒸发器是环路热管中最重要的部件,蒸发器主芯中的流场是设计中关注的焦点。建立了一个轴对称二维数学模型来模拟流体工质在圆柱形蒸发器主芯中的流动、传热和蒸发现象。模型充分考虑了流场和蒸发界面间相互作用对于蒸发界面的位置和孔隙中弯曲液面曲率半径的影响。模拟了瞬态和稳态流场,并研究了热负荷的影响。模拟结果在一定工况下是合理的。  相似文献   
809.
陈洪波  杨涤  张利宾 《宇航学报》2006,27(4):594-599
给出了实现同平面LEO-LEO空间交会的必要条件,分析了基于脉冲的主动调相方法,并重点研究了基于气动辅助轨道转移技术实现同平面LEO—LEO的空间交会方案。通过设计标准的同平面HEO—LEO气动辅助轨道转移最优轨迹,得到OTV与目标实现交会必须满足的标准相角,然后采用主动调相法使飞行器运行到高轨道时,恰好满足HEO—LEO气动辅助空间交会的标准相角,最后借助气动辅助轨道转移技术实现空间交会。该方法具有扩大发射窗口,且比基于脉冲主动调相法节省燃料等优点。  相似文献   
810.
高温压力传感器冷却套温度场的有限元法计算   总被引:1,自引:0,他引:1  
介绍一种高温压力传感器冷却套的结构,并用有限元法计算冷却套的温度场分布,将轴对称的冷却套半边划分为许多三角形单元,将单元内的温度离散到单元三个节点上,应用传热学理论计算出三类边界条件的参数,应用有限元法计算出各节点的温度,经过计算机数据处理,得到冷却套温度场的分布,最后,对冷却套温度进行实测,测试结果与理论计算较为接近,表明冷却套结构设计是合理的,并且用有限元法计算冷却套温度场分布是行之有效的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号