首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   7篇
  国内免费   6篇
航空   25篇
航天技术   7篇
综合类   2篇
航天   11篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
41.
基于Fuzzy数学的飞机自动停车故障诊断   总被引:1,自引:0,他引:1  
飞机本身是一个复杂的系统.因此,系统及分系统的故障也是纷繁复杂的,反映在故障征兆(表象)与原因上,同一故障征兆可能是多种原因所引起的,而同一故障原因又往往产生多种故障征兆.对于故障征兆与故障原因间的复杂隶属关系,如果使用传统的经典数学模型来处理往往不能准确的解决问题.本文将模糊数学方法引入到飞机故障诊断中,建立了某型飞机自动停车故障诊断的数学模型,解决了针对一种或数种故障征兆,如何准确、快速地找到引起故障的真正原因,并且针对最大隶属度原则的缺陷,改进了该原则,此诊断方法可以按飞机系统功能分解推广到对任一分系统(如液压系统,燃料系统,冷气系统,着陆装置系统等)的故障诊断.  相似文献   
42.
辅助动力装置系统空中起动设计和验证   总被引:1,自引:1,他引:1       下载免费PDF全文
辅助动力装置(Auxiliary Power Unit,简称APU)系统空中起动设计和验证共涉及APU 本体研制、APU 系统进排气冲压恢复计算分析、APU 系统进排气和APU 本体性能匹配计算分析、APU 系统进气风门设计、进气风门气动载荷计算分析、进气风门作动机构设计、进气风门控制逻辑设计、本体起动控制逻辑设计、冲压恢复测量试飞、适航验证试验试飞等内容,这对飞机主制造商的系统集成能力和适航验证能力提出了很高要求。APU 系统空中起动设计直接影响系统起动性能和起动包线,对某型飞机的辅助动力装置系统空中起动设计和验证进行了介绍,在型号研制经验的基础上,对APU 系统空中起动设计和验证流程和方法进行总结,对后续型号研制具有较强的指导性。  相似文献   
43.
某型航空发动机停车冒黑烟故障研究分析   总被引:1,自引:0,他引:1  
针对某型发动机在外场使用中多次出现停车后尾喷筒冒黑烟故障,进行故障原因分析、危害性分析,列出故障树,查清了故障原因并提出了改进措施,为解决同类发动机故障具有指导作用。  相似文献   
44.
由于快速性的要求,微小型无人机不经过地面精确初始对准就升空作业,因此MIMU(Micro Inertial Measurement Unit)空中对准在大失准角下进行. 为了提高微小型无人机空中的反应速度和作业精度,把非线性误差部分作为状态变量,建立MIMU在大方位失准角下无需小角度近似的空中对准的线性模型,同时为解决噪声不确定导致滤波器发散的问题,提出将AKF (Adaptive Kalman Filter)应用在GPS(Global Positioning System)辅助MIMU的空中对准中,半物理仿真结果证实其取得了比基于非线性误差模型的EKF(Extended Kalman Filter)精度高且速度快的结果,不仅使MIMU的方位失准角由60° 快速下降到2° 左右,且所需时间仅为EKF的67%.   相似文献   
45.
樊朋飞  刘蛟龙  凡永华  闫杰 《航空学报》2018,39(12):322382-322382
针对可重复使用运载器末端能量管理阶段的在线轨迹生成与制导问题,研究了一种基于参数化轨迹描述且不依赖在线积分推演与气动辨识的三维轨迹预测-校正制导算法。首先,设计了由动压上边界、下边界和最大能量边界构成的动压包线,由一个参数对包线内的动压剖面进行描述,采用离线计算的方式预先获得飞行航程随动压剖面参数、倾侧角和能量高度变化的关系并存为三维数表。随后,根据当前状态和地面航迹参数计算得到各飞行阶段地面航程信息,在待飞航程的预测中,考虑侧向机动的航程损失和模型偏差影响,采用分段查表和在线估计航程修正系数的方法对预测航程进行了两次修正。最后,研究了约束条件下的多轨迹参数连续更新策略,以保证消除航程偏差的同时轨迹具有适宜性。仿真结果表明,该方法对于初始位置、能量状态散布不敏感,其末端位置控制精度保持在米级。完成单次轨迹预测-校正的时间不超过2.3 ms,拥有较高的在线预测效率,对突发故障造成的模型偏差具有较强的适应能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号