首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   14篇
  国内免费   18篇
航空   101篇
航天技术   35篇
综合类   8篇
航天   2篇
  2023年   6篇
  2022年   8篇
  2021年   3篇
  2020年   6篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   7篇
  2012年   4篇
  2011年   3篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   12篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1988年   2篇
  1986年   1篇
  1984年   3篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
141.
Electrochemical drilling(ECD) provides an alternative technique for drilling multiple small holes in difficult-to-machine materials in numerous industrial applications such as for aeroengines. The value and fluctuation of electrolyte flowrate can seriously affect the machining stability and hole quality in ECD. In particular, when drilling multiple holes, the distribution and fluctuations of the electrolyte flowrate in each channel could influence the uniformity of the electrolyte flowrate among...  相似文献   
142.
143.
Film cooling holes are widely used in aero-engine turbine blades. These blades feature large numbers of holes with complex angles and require a high level of surface integrity. Electrochemical discharge drilling(ECDD) combines the high efficiency of electrical discharge drilling(EDD) with high quality of electrochemical drilling(ECD). However, due to the existence of a variety of energy for material removal, accurate and timely detection of breakthroughs is fraught with difficulties. An insuffic...  相似文献   
144.
This paper presents the results of the analysis of the evolution of coronal holes (CHs) on the Sun during the period May 13, 2010 – March 20, 2022, covering Solar Cycle 24. Our study uses images in the extreme-ultraviolet iron line (Fe XII 193 Å) obtained with the Atmospheric Imager Assembly of the Solar Dynamics Observatory (AIA/SDO). To localize CHs and determine their areas, we used the Heliophysics Event Knowledgebase (HEK). We separate the CHs into polar and non-polar and study the evolutionary features of each group. During this period, an asymmetry between the Northern (N) and Southern (S) Hemispheres (N-S or hemispheric asymmetry) is detected both in the solar activity (SA) indices and in the localization of the maximum areas of the polar and non-polar CHs. It is shown that the hemispheric asymmetry of the areas of polar and non-polar CHs varies significantly over time and that the nature of these changes is clearly related to the SA cycle. We find that for most of the period, the polar CHs were predominated generated in the S- hemisphere while the non-polar CHs were dominant in the N- hemisphere. It is found that the maximum and minimum of the hemispheric imbalance in the areas of non-polar CHs are close in time to the maximum and minimum of the asymmetry of the SA indices (the number and areas of sunspots). The maximum hemispheric imbalance of the polar CH areas is observed at the maximum of Cycle 24, and the minimum imbalance is found at the cycle minimum. These results confirm our assumption that these two types of CHs are of a different nature and that the non-polar CHs, like sunspots, are elements of the general magnetic activity.  相似文献   
145.
This study examines the occurrences rate of geomagnetic storms during the solar cycles (SCs) 20–24. It also investigates the solar sources at SCs 23 and 24. The Disturbed storm time (Dst) and Sunspot Number (SSN) data were used in the study. The study establishes that the magnitude of the rate of occurrences of geomagnetic storms is higher (lower) at the descending phases (minimum phases) of solar cycle. It as well reveals that severe and extreme geomagnetic storms (Dst < -250 nT) seldom occur at low solar activity but at very high solar activity and are mostly associated with coronal mass ejections (CMEs) when occurred. Storms caused by CME + CH-HSSW are more prominent during the descending phase than any other phase of the solar cycle. Solar minimum features more CH-HSSW- associated storms than any other phase. It was also revealed that all high intensity geomagnetic storms (strong, severe and extreme) are mostly associated with CMEs. However, CH-HSSW can occasionally generate strong storms during solar minimum. The results have proven that CMEs are the leading cause of geomagnetic storms at the ascending, maximum and the descending phases of the cycles 23 and 24 followed by CME + CH-HSSW. The results from this study indicate that the rate of occurrence of geomagnetic storms could be predicted in SC phases.  相似文献   
146.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号