全文获取类型
收费全文 | 266篇 |
免费 | 49篇 |
国内免费 | 73篇 |
专业分类
航空 | 291篇 |
航天技术 | 51篇 |
综合类 | 30篇 |
航天 | 16篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 10篇 |
2021年 | 15篇 |
2020年 | 17篇 |
2019年 | 13篇 |
2018年 | 16篇 |
2017年 | 23篇 |
2016年 | 26篇 |
2015年 | 11篇 |
2014年 | 25篇 |
2013年 | 16篇 |
2012年 | 22篇 |
2011年 | 22篇 |
2010年 | 16篇 |
2009年 | 20篇 |
2008年 | 15篇 |
2007年 | 10篇 |
2006年 | 16篇 |
2005年 | 12篇 |
2004年 | 4篇 |
2003年 | 10篇 |
2002年 | 7篇 |
2001年 | 11篇 |
2000年 | 1篇 |
1999年 | 5篇 |
1998年 | 6篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 7篇 |
1990年 | 6篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有388条查询结果,搜索用时 0 毫秒
71.
为了获得工作叶片内部通道布置斜肋情况下的气膜孔流量系数,利用商业软件对带60°肋和双排气膜孔出流的旋转矩形通道内的流场进行了数值模拟.通道入口雷诺为数60 000,罗斯贝数为0,0.11,0.22,气膜孔总出流比0.22.通道静止时,计算结果与实验数据符合较好,左侧孔和右侧孔的流量系数差别不大.通道顺时针旋转时,两个孔的平均流量系数增加90%左右,左侧孔流量系数是右侧孔流量系数的4~5倍.通道逆时针旋转时,两个孔的平均流量系数减小10%左右,左侧孔和右侧孔流量系数基本相同. 相似文献
72.
钛合金属难加工材料,其深孔加工的难度更为突出,加工质量不易保证。本文通过实验对比,对加工钛合金大口径深盲孔中出现的偏孔、切屑堵塞、切削振动、刀具破损等主要问题进行了分析,提出了解决办法,得出了切削用量的优化参数。由于钛合金的化学亲和作用,深孔加工刀具的导向条表面易于粘附,结果拉伤已加工表面,造成表面粗糙度上升。加大导向条与孔壁的间隙虽可减少导向条表面的粘附,但同时会引起切削振动的加剧。针对这一矛盾,本文着重对加工刀具的导向条分布、导向条与孔壁的间隙以及导向条的选材方面进行了探讨,提出了以非金属导向条代替硬质合金导向条进行钛合金深孔精加工的方法,使得已加工表面的粗糙度大大降低。这些研究结果对实际加工具有一定的指导作用。 相似文献
73.
本文利用各向异性体平面弹性理论中的复势方法,以Faber级数为工具,导出层板多孔/弹性核过盈配合在钉载作用下的级数解。 相似文献
74.
流体网络法对喷管气膜冷却问题具有独特的优势,但难以反映出入流对冷却气流道静压变化的影响。针对此引入了可反映出入流导致静压变化的管道元件,并基于孔口速度落后角对静压变化量进行了建模。验证算例表明,这一改进使沿程静压变化趋势与实际吻合较好,使冷却气流量分配计算误差降低到0.5%以下。将改进后的流体网络法与主流通道的计算流体力学模拟耦合用于分析喷管冷却气流量分配,与全计算流体力学模拟相比结果差异小于1.2%,且大幅降低计算量;在某型喷管设计中的应用表明,可以有效反映冷却结构改变对冷却气流量分配的影响。 相似文献
75.
76.
77.
螺旋铣孔是航空航天领域新出现的制孔技术,其切削过程中会产生径向切削力,从而引起刀具变形并造成孔径偏差。针对该问题开展了钛合金螺旋铣孔孔径偏差试验,分析了包括进给方向在内的不同加工参数对孔径偏差的影响规律;基于螺旋铣孔运动学原理对不同进给方向下的材料去除过程和径向切削力方向进行了研究,分析了不同进给方向下的孔径偏差变化规律及形成原因,并设计切削力试验进行了验证;通过分析不同加工参数下的未变形切屑形状及径向切削力变化情况,研究了各加工参数对孔径变化趋势的影响规律。研究结果表明,当进给方向为顺时针时,刀具受背离孔心的径向切削力的作用向孔径外侧发生挠曲变形,导致所加工孔径大于理论孔径;当进给方向为逆时针时则相反。进给速度和导程的增加将加剧孔径偏差,切削速度的增加则会减弱孔径偏差。 相似文献
78.
为了获得亚声速涡轮导叶吸力面不同位置处单排W型气膜孔的气膜冷却特性,在短周期跨声速风洞中实验研究了吹风比、主流湍流度对W型气膜孔冷却效率的影响。两列单排气膜孔分别布置在吸力面16%和21%相对弧长处,实验进口雷诺数范围为3.0×105~9.0×105,吹风比范围是0.5~2.0,叶栅出口等熵马赫数为0.8,高低湍流度分别为14.7% 和1.3%。实验结果表明:低湍流度时孔排1和孔排2下游的气膜冷却效率都随吹风比的增大先增大后减小,最佳吹风比分别为BR=1.2和BR=0.8。由于孔排1和孔排2所处位置的主流边界层状态不同,导致湍流度对于气膜冷却效率有不同的影响。对于孔排1,大吹风比时高湍流度使冷气核心向壁面移动,提高了气膜冷却效率;而小吹风比时,湍流度对冷却效率的影响随雷诺数升高而减弱。对于孔排2,大吹风比时高湍流度提高了孔附近区域的冷却效率,同时加快了冷却效率沿流向下降的速度,而在小吹风比时高湍流度显著降低了孔排下游气膜冷却效率。 相似文献
79.
在跨声速叶栅通道内,试验研究了叶片压力面气膜冷却特性,详细地对比分析了在不同主流进口雷诺数(Re=1.7×105,3.7×105,5.7×105)、出口马赫数(Ma=0.81,0.91,1.01)及多个气膜吹风比(M=0.5~3.0)条件下的压力面簸箕孔型气膜冷却效率。试验结果表明:主流出口马赫数变化对气膜孔下游冷却效率的分布与具体数值均无影响;而主流进口雷诺数的影响较大。增大主流进口雷诺数使得气膜分离再贴附对应的吹风比相应增大,Re=1.7×105时在吹风比M=1.0时出现气膜分离与再贴附现象,而Re=3.7×105和Re=5.7×105对应的临界吹风比则分别为2.0和2.5;主流进口雷诺数越大,小吹风比下近孔区域的冷却效率越高,而在孔下游区域则相反;大吹风比下,则主流进口雷诺数越大冷却效率越小。 相似文献
80.