首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   12篇
  国内免费   25篇
航空   76篇
航天技术   27篇
综合类   6篇
航天   39篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   9篇
  2016年   14篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   10篇
  2011年   15篇
  2010年   3篇
  2009年   9篇
  2008年   9篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
61.
平流层飞艇的飞行性能对其飞行安全、机动能力等非常重要.本文结合平流层飞艇的特点,提出"飞行温度限"和"飞行速度限"对其极限飞行性能进行评估,并在理论分析的基础上,提出相应的估算方法.通过具体实例,对平流层飞艇的极限飞行性能进行评估.  相似文献   
62.
When a stratospheric airship free floats at pressure altitude, the sideslip angle of the airship is neither random nor against the wind, but is stable on certain values. According to classical potential flow theory, a simplified two-dimensional ellipse and three-dimensional ellipsoid are firstly analyzed respectively, which implied that the airship could present crosswind orientation. The numerical investigations (CFD) on the yaw stability based on a bare hull and a finned airship are employed for verifying the theory conclusion. It is found that the finned airships can remain stable when its sideslip Angle is 55–70°, which is less than 90° of the stable angle of the ellipsoid and bare hull, but statically unstable at low sideslip angles, its static instability is similar to that of dynamic flight. Then the fight data of three stratospheric airships is analyzed. The yaw stability in flight data generally agrees with expectations drawn of theoretical and numerical simulation. These investigations serve to provide references for yaw control and configuration design of airships.  相似文献   
63.
为了进一步减小阻力,提高整个飞艇的气动性能,针对某双体飞艇囊体的长宽比、宽厚比和最大截面位置三个主要外形参数,采用试验设计和响应面法相结合的方法进行了囊体气动外形优化设计,以CFD数值计算技术的结果为基础,共进行了15次试验。优化前,囊体零升阻力系数为0.029 8;优化后,其零升阻力系数为0.027 4,减小了8.76%,巡航状态升阻比增加了5.25%,整个飞艇的气动性能得以较大改善,也证实了优化模型的有效性。研究表明:基于Box-Behnken设计和响应面法的双体飞艇囊体气动外形优化设计方法,不但考虑了外形参数之间的交互作用,而且计算量相对较小,计算结果的精度和可靠度较高,可以快速准确地优选出囊体外形参数的最优组合,具备一定的工程实用价值。  相似文献   
64.
为了对常规单囊体飞艇和混合式飞艇各自的性能特点有更清晰的认识,分别设计了某常规飞艇和混合式飞艇的总体方案,建立了两类飞艇的分析模型,并从气动特性、浮升特性、重量特性、续航特性方面对二者的综合性能进行了比较和分析。研究表明:在体积相同的情况下,虽然混合式飞艇在阻力特性方面不如单囊体飞艇,但由于混合式飞艇动升力较大,并可以借助动升力来平衡燃油的消耗,且有效载荷大、载油量大、可操纵性好,更有利于长航时飞行。研究结果可为我国开展长航时和大载重飞艇研制提供一定的设计参考。  相似文献   
65.
研究充气结构在飞艇设计、制造和操控方面的用途,提出一种由受压变硬的空心管组成的充气结构,其安装在飞艇囊体上,使得飞艇结构变得更坚固。这种设计创新可以降低结构质量,也可提高非常规飞艇的动力和机械性能。同时,由于这些充气结构的简易性,制造和操作过程中面临的难题将会大大减少。  相似文献   
66.
马东立  叶川 《航空动力学报》2013,28(5):1074-1080
计算了球体和椭球体的平移、转动加速度导数,数值模拟了NACA0015翼型的俯仰振荡,验证了计算流体动力学(CFD)方法计算动导数的有效性.模拟升力浮力复合型飞艇的强迫振荡运动,得到了全艇以及机翼、艇身、平尾和垂尾的动导数,并与常规飞艇进行了比较分析.机翼对速度导数的贡献导致复合型飞艇升沉速度导数、滚转角速度导数较常规飞艇显著增大.常规飞艇加速度导数以惯性力成分为主,但黏性力成分以及机翼对艇身和尾翼的干扰对复合型飞艇升沉、滚转和俯仰3个方向的加速度导数有重要影响,不能将加速度导数简化为附加质量系数.   相似文献   
67.
苗景刚  周江华  杨新 《宇航学报》2016,37(2):153-158
在体积可变的情况下,针对一次排气过程中压差和艇囊体积的动态变化,利用伯努利方程和气体状态方程,揭示了飞艇的排气特性,即压差的平方根随时间线性下降。进而提出一种排气阀效率和艇体变形的实验方法,可在飞艇集成测试中同步完成。试验校验了飞艇的排气特性,且飞艇体积变形率与压差成正比,排气阀效率与标定结果一致。本文的结果可为飞艇总体设计、压力和浮力控制提供参考。  相似文献   
68.
一种高空飞艇螺旋桨结构多目标优化设计方法   总被引:1,自引:1,他引:0  
为了远离旋转激振力的影响避免桨叶共振,需要提高桨叶的弯曲频率,这不可避免的会增加质量。为了解决低质量与高频率之间的矛盾,提出了一种螺旋桨两目标优化方法。以桨叶最小质量和最大弯曲频率作为两个优化目标,以复合材料的铺层角度、铺层厚度和铺层区域作为设计变量,以最大应变、桨尖最大位移和桨叶50%、75%和85%剖面处的扭转角作为约束,使用非支配排序遗传算法(NSGA-Ⅱ)对螺旋桨进行优化设计,得到了关于质量和频率的Pareto解集。转速为520 r/min的两叶桨的转频为8.76 Hz,穿越频率为17.33 Hz,根据频率在Pareto解集上选取远离这两个点的方案。通过制造与测试,得到的实物桨叶频率为12.29 Hz,距离两个共振点都较远,有效的避免了桨叶共振。   相似文献   
69.
平流层飞艇囊体气密层材料及氦气透过聚合物研究现状   总被引:1,自引:0,他引:1  
赵臻璐  王小群  杜善义 《航空学报》2009,30(9):1761-1768
 平流层飞艇是一种依靠主气囊充满轻于空气的气体的浮力在18~24 km高空工作的重要的低速近空间飞行器,飞艇囊体气密层材料的气体阻隔性能特别是对氦气的阻隔性能是确保平流层飞艇正常工作和延长驻空时间的关键技术。在介绍飞艇气囊工作原理的基础上,分析了平流层飞艇对囊体材料性能的要求,重点分析了对组成层压结构囊体的气密层材料的性能要求和选材依据,并对气体透过聚合物薄膜的一般过程和机理进行了阐述。详细归纳了国内外对用做浮空气体的氦气透过聚合物的研究现状,指出高阻隔气密层材料的国产化是中国发展平流层飞艇所面临的一个瓶颈问题。  相似文献   
70.
软式平流层飞艇艇体在上升和下降时经常呈堆叠状态,GPS信号会被艇体间歇性遮挡,因而只能采用惯性导航。为保证在飞艇上升和下降过程中,INS/GPS组合导航系统在被艇体遮挡GPS时仍能够提供满足精度要求的导航信息,设计了一种改进的反向传播神经网络(Back Propagation Neural Network, BPNN)惯性导航算法。采用神经网络,根据惯性导航系统在1s内的速度均值和姿态变化量,预估其在1s末的位置误差和速度误差,并对惯性导航结果进行修正。仿真实验和跑车试验结果表明,在GPS失效的30s内,新算法使得位置误差低于15m,速度误差低于0.7m/s,误差相比纯惯性导航降低了85%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号