首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  国内免费   6篇
航空   27篇
航天技术   12篇
综合类   3篇
航天   1篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   13篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
超磁致伸缩作动器(GMA)输入输出之间存在着磁滞非线性关系,当研究其中高频输出特性时,为了降低材料自身迟滞非线性特性的影响,往往选用零点与饱和状态之间线性度较好的不饱和小回线,因此很有必要开展动态不饱和小回线数学模型的研究。首先在综合研究磁致伸缩材料(GMM)和GMA结构动力学特性的基础上结合安培环路定理提出以励磁电流为输入、应变为输出的动态Jiles-Atherton(J-A)模型,然后在引入磁滞回线特性变量的基础上得出J-A模型关键模型参数对其特性的影响规律,根据不饱和小回线仿真与实验波形的偏离特性提出模型参数的修正方法得到不饱和小回线动态J-A模型。最后,在不同频率和不同饱和幅值下通过实验验证该数学模型的正确性。   相似文献   
12.
In the coming decades the detection of Earth-like extrasolar planets, either apparently lifeless or exhibiting spectral signatures of life, will encourage design studies for craft to visit them. These missions will require the elaboration of an interstellar planetary protection protocol. Given a specific dose required to sterilize microorganisms on a spacecraft, a critical mean velocity can be determined below which a craft becomes self-sterilizing. This velocity is calculated to be below velocities previously projected for interstellar missions, suggesting that an active sterilization protocol prior to launch might be required. Given uncertainties in the surface conditions of a destination extrasolar planet, particularly at microscopic scales, the potential for unknown biochemistries and biologies elsewhere, or the possible inoculation of a lifeless planet that is habitable, then both lander and orbiter interstellar missions should be completely free of all viable organisms, necessitating a planetary protection approach applied to orbiters and landers bound for star systems with unknown local conditions for habitability. I discuss the case of existing craft on interstellar trajectories – Pioneer 10, 11 and Voyager 1 and 2.  相似文献   
13.
超磁致伸缩电静液作动器磁场分析与优化   总被引:1,自引:0,他引:1  
提出一种超磁致伸缩电静液作动器(GMEHA)结构,采用永磁体与控制线圈组合提供驱动磁场.首先建立了该组合磁路数学模型,并给出了超磁致伸缩棒内磁感应强度计算解析式;其次,对以上结构进行了有限元分析(FEA),得出了磁路主要结构参数与磁场分布均匀性之间映射规律;最后进行了作动器磁场试验研究并与有限元分析结果进行了对比,验证了理论与有限元模型的可预测性,给出了该电静液作动器结构设计方法.结果表明:该电静液作动器的最佳驱动频率为250Hz,最大无负载体积流量为0.85L/min,最大阻断力达到了120N.   相似文献   
14.
介绍了超磁致伸缩驱动器的特点及其应用范围,论述了驱动器的结构参数及工作原理,建立了基于畴壁理论的GMA致动模型,对采用国产材料研制的驱动器静态位移输出特性进行了测试,并对致动模型进行了实验分析.  相似文献   
15.
In this review we present the main results obtained by the ISO satellite on the abundance and spatial distribution of water vapor in the direction of molecular clouds, evolved stars, galaxies, and in the bodies of our Solar System. We also discuss the modeling of H2O and the difficulties found in the interpretation of the data, the need of collisional rates and the perspectives that future high angular and high spectral resolution observations of H2O with the Herschel Space Observatory will open.  相似文献   
16.
17.
A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius–Clapeyron relation provides water–vapor feedback. The resulting iterative algorithm is applied to three “super-Earths” in the Gliese 581 system, including the “Goldilocks” planet g (Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star’s habitable zone without data or assumptions about a planet’s atmosphere.  相似文献   
18.
The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle. The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun’s movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events). However, at present there is no clear physical mechanism relating these phenomena. The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum. In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events. We searched for particular changes in the Sun’s acceleration and concentrated on long-term variations of the solar cycle. We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions. In particular, at these moments, the radial component of the Sun’s acceleration (i.e., in the barycentre-Sun direction) had an exceptional magnitude. These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum. We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum. We apply our results in a novel theory of Sun–planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun’s capability of storing hypothetical reservoirs of potential energy that could be released by internal flows and might be related to the solar cycle. This process begins about 40 years before the solar angular momentum inversions, i.e., before Maunder Minimum, Dalton Minimum, and before the present extended minimum. Our conclusions suggest a dynamical characterization of peculiar prolonged solar minima. We discuss the possible implications of these results for the solar cycle including the present extended minimum.  相似文献   
19.
20.
Models of the origins of gas giant planets and ‘ice’ giant planets are discussed and related to formation theories of both smaller objects (terrestrial planets) and larger bodies (stars). The most detailed models of planetary formation are based upon observations of our own Solar System, of young stars and their environments, and of extrasolar planets. Stars form from the collapse, and sometimes fragmentation, of molecular cloud cores. Terrestrial planets are formed within disks around young stars via the accumulation of small dust grains into larger and larger bodies until the planetary orbits become well enough separated that the configuration is stable for the lifetime of the system. Uranus and Neptune almost certainly formed via a bottom-up (terrestrial planet-like) mechanism; such a mechanism is also the most likely origin scenario for Saturn and Jupiter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号