首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   614篇
  免费   135篇
  国内免费   166篇
航空   586篇
航天技术   110篇
综合类   109篇
航天   110篇
  2024年   2篇
  2023年   14篇
  2022年   17篇
  2021年   26篇
  2020年   27篇
  2019年   24篇
  2018年   29篇
  2017年   32篇
  2016年   42篇
  2015年   38篇
  2014年   39篇
  2013年   39篇
  2012年   51篇
  2011年   44篇
  2010年   55篇
  2009年   54篇
  2008年   40篇
  2007年   48篇
  2006年   41篇
  2005年   22篇
  2004年   24篇
  2003年   16篇
  2002年   22篇
  2001年   22篇
  2000年   15篇
  1999年   14篇
  1998年   7篇
  1997年   13篇
  1996年   18篇
  1995年   10篇
  1994年   12篇
  1993年   14篇
  1992年   11篇
  1991年   13篇
  1990年   6篇
  1989年   10篇
  1988年   4篇
排序方式: 共有915条查询结果,搜索用时 609 毫秒
871.
论述了一种用于航空发电机测试的电能回馈型电子负载的实现方案。这种电能回馈型电子负载采用电流滞环PWM技术,可实现功率因数无级调节,可模拟阻性、容性、感性等各种航空发电机负载形式,并通过三相逆变器将发电机发出的电能以功率因数1回馈给电网,降低了设备功耗,缩小了设备体积。采用Matlab进行了系统仿真,仿真结果验证了该方案的可行性。  相似文献   
872.
詹光  孙颖 《飞机设计》2008,28(1):16-19,32
采用有人战斗机去除人生理条件限制方法,探讨了无人作战飞机机动过载的增长潜力(机动能力)。结果表明,对比有人战斗机,无人作战飞机还具有很大的过载能力提升潜力。通过对影响有人战斗机的机动过载提高主要因素的分析,指出设计高机动无人作战飞机的技术途径及所涉及到的关键技术问题。  相似文献   
873.
MEMS陀螺标度因数误差分析及分段插值补偿   总被引:4,自引:1,他引:3  
动态条件下,标度因数引起的误差是MEMS(Micro Electromechanical System)陀螺主要误差源之一.为了提高陀螺精度,基于内框驱动式硅MEMS陀螺误差机理,分析了标度因数常值误差、非线性误差以及不对称误差的物理起因,构建了标度因数误差数学模型,提出了对陀螺标度因数按照角速度大小分段插值的补偿方法,消除了转速引起的陀螺标度因数误差.试验结果表明:MEMS陀螺标度因数误差高达4053.2(°)/h(1 σ ),采用分段插值法补偿后陀螺误差减小到79.0(°)/h(1 σ ),补偿精度比一次拟合及分段法分别提高了15.4倍和7.5倍,验证了MEMS陀螺标度因数误差模型的正确性,证明了标度因数实时分段插值补偿方法的准确性和适用性.   相似文献   
874.
疲劳关键件加速腐蚀因子可靠性分析   总被引:5,自引:0,他引:5  
贺小帆  刘文珽 《航空学报》2005,26(3):315-319
针对腐蚀条件下飞机结构疲劳寿命分析和评定问题,对疲劳关键件加速腐蚀因子进行了研究。以疲劳寿命作为疲劳关键件的腐蚀量,定义加速腐蚀因子为疲劳寿命相等时的服役时间与加速时间的比。假定疲劳寿命服从对数正态分布、疲劳寿命随腐蚀时间呈指数变化,推导得到了加速腐蚀因子的表达式以及加速腐蚀因子与腐蚀时间无关的结论;得到了加速腐蚀因子估计量的分布,对其进行了可靠性分析。并进行了典型结构模拟试件大气暴露和试验室加速腐蚀因子的可靠性分析。  相似文献   
875.
纤维缠绕壳体的应力平衡系数和圆筒缠绕角   总被引:1,自引:1,他引:0  
讨论了纤维缠绕壳体应力平衡系数的定义.在封头与圆筒等强的条件下,给出了应力平衡系数的确定方法.得到了应力平衡系数k_s与圆筒缠绕角α的关系式.结果表明,应力平衡系数随圆筒缠绕角的减小而减小.只要k_s<1,则应力平衡系数的引入,将增加圆筒的质量.为此,适当增大圆筒缠绕角,既能使封头得以加强,又能减小圆筒质量的增加.  相似文献   
876.
自适应渐消EKF方法及其在卫星跟踪中的应用   总被引:1,自引:0,他引:1  
针对在系统不能确切建模或模型误差随时间改变等场合下,传统扩展卡尔曼滤波方法及其改进算法估计误差较大甚至引起滤波发散等问题,将基于新息序列对状态噪声协方差矩阵实时估计的方法引入到渐消EKF中,提出了一种自适应渐消扩展卡尔曼滤波方法,推导了相关公式并详细给出了新方法的计算流程。采用单星对卫星仅测角被动定轨跟踪的例子对算法性能进行了对比分析。仿真结果表明,与传统EKF方法及其改进算法相比,该方法在估计精度、滤波收敛速度以及对初始状态误差的适应性等方面,显著提高了非线性滤波器的性能。  相似文献   
877.
为了研究转捩对气热耦合计算的影响,在B-L代数模型与SST(Shear StressTransport) 二方程模型的基础上,增加了两类基于间歇因子的转捩模型:代数 AGS (Abu-Gharmam&Shaw) 模型与一方程间歇因子输运方程。选取NASA-MARKⅡ叶片为算例,分别采用全湍流模型与加入转捩的模型进行气热耦合计算。数值计算结果与试验对比表明由于能够预测附面层中的转捩过程,采用转捩模型的耦合计算得到的结果与试验吻合最好,由于在叶片壁面附近的网格较粗,采用间歇因子输运方程的转捩模型计算的结果要逊于采用代数转捩模型的结果。  相似文献   
878.
This article describes an experimental study on friction and heat transfer performances of a transitional airflow in a rectangular channel with stagger-arrayed short pin fins. Friction factors, average Nusselt numbers and overall thermal performances of the transitional flow are obtained. The experimental study has showed that the pin fins enhance the heat transfer performance significantly, however increasing the flow frictional resistance considerably. After comparing the experimental results with the published data in references, it can be concluded that, in the transitional flow region, the pin fin channels of the proposed geometrical configuration could lead to a significant improvement of an overall thermal performance; for instance, the convective heat transfer performance is increased by at least 68%. By contrast, in the fully turbulent flow region, the ability of the proposed pin fin channels to increase heat transfer performances decreases as the Reynolds number increases. When Re > 6 000, the overall thermal performance becomes lower than the others.  相似文献   
879.
本文以去离子水为工质,对微阵列射流冲击光滑和肋化表面的传热特性进行了实验研究,并以光滑表面传热性能为基准,讨论了肋化表面强化因子(ε)变化规律。实验结果表明:(1) 浸没和自由射流的传热系数均受无量纲射流距离(H/d)影响;提高射流Re数和减小无量纲孔间距(S/d)都能够增强换热。(2)浸没射流ε受H/d影响大,而自由射流ε基本不受H/d影响;两种射流方式的ε都随Re数增大,且渐趋于一个常数。(3)对流热阻在各种射流情况下均随流量不断下降,但下降趋势逐渐平缓,当流量大到一定时,热阻基本不再降低。  相似文献   
880.
卫星重力测量中加速度计在轨参数校准方法研究   总被引:4,自引:1,他引:3  
文章介绍了静电悬浮加速度计的基本工作原理,概述了目前卫星重力测量中加速度计参数的在轨外部校准方法,讨论了利用推进器推力、卫星旋转产生的离心力、引力开展加速度计标度因数在轨实时标定的可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号