首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  国内免费   10篇
航空   22篇
航天技术   3篇
综合类   3篇
航天   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2016年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有32条查询结果,搜索用时 78 毫秒
31.
《中国航空学报》2022,35(8):304-313
A novel residual stress indentation model for conical indentation loading is proposed to describe the relationship between the residual stress, material constitutive parameters, load, and displacement for materials with a uniaxial constitutive relationship that obeys Hollomon’s power law (H-law). The novel model was established based on the principle that the equivalent material without residual stress corresponds to the original material with residual stress, conical indentation theoretical model based on energy density equivalence, and an assumed power-law relationship between the dimensionless residual stress and relative difference of the yield stresses of the equivalent material and original material. Sixty imaginary H-law materials with ten equibiaxial and ten uniaxial residual stresses were investigated by Finite Element Analysis (FEA). The residual stresses predicted by the novel model from the indentation load–displacement curves simulated for the imaginary materials are in close agreement with those applied by the FEA. Finally, indentation tests for Cr12MoV steel, 45 steel, and 6061-T6511 aluminum alloy were carried out on their specimens without residual stress and their bending specimens with equibiaxial and uniaxial residual stresses. The residual stresses predicted by the novel model according to the indentation load–displacement test curves are in good agreement with those applied by the tests.  相似文献   
32.
《中国航空学报》2023,36(8):101-114
Full impact damage tolerance assessment requires the ability to properly mimic the repeated impact response and damage behaviour of composite materials using quasi-static approximations. To this aim, this paper reports an experimental investigation evaluating two quasi-static methods for mimicking repeated impact response and damage behaviour of Carbon Fibre Reinforced Polymer (CFRP) composite laminates. In this study, an 8.45-J single impact was repeated 225 times and mimicked with 225 times 6.51-J quasi-static (energy equivalent) indentations and with 225 quasi-static (force equivalent) indentations following the recorded impact peak force variation. Results show that the loading rate and the inertial effect are the two major factors affecting the responses of the composite laminates under out-of-plane concentrated loading. Both the energy- and force-equivalent quasi-static indentations failed to reproduce the impact responses greatly associated with high loading rate and inertial effect. The force-equivalent quasi-static indentations were performed in a semi-automatic way and induced damage states more similar to those of the repeated impacts than those of the energy-equivalent quasi-static indentations, whereas the latter can be better automated and has better reproducibility compared to that of the repeated impact responses, as it is less dependent on high loading rate and inertial effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号