首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4291篇
  免费   897篇
  国内免费   949篇
航空   4576篇
航天技术   432篇
综合类   671篇
航天   458篇
  2024年   9篇
  2023年   57篇
  2022年   148篇
  2021年   173篇
  2020年   169篇
  2019年   180篇
  2018年   167篇
  2017年   187篇
  2016年   225篇
  2015年   228篇
  2014年   273篇
  2013年   232篇
  2012年   297篇
  2011年   338篇
  2010年   254篇
  2009年   287篇
  2008年   241篇
  2007年   241篇
  2006年   200篇
  2005年   189篇
  2004年   143篇
  2003年   156篇
  2002年   164篇
  2001年   136篇
  2000年   170篇
  1999年   129篇
  1998年   112篇
  1997年   124篇
  1996年   160篇
  1995年   107篇
  1994年   129篇
  1993年   104篇
  1992年   81篇
  1991年   81篇
  1990年   74篇
  1989年   74篇
  1988年   83篇
  1987年   11篇
  1986年   2篇
  1984年   2篇
排序方式: 共有6137条查询结果,搜索用时 468 毫秒
541.
为了实现对终端区空中交通流到达情况更加准确的分析,针对目前常用的流量统计方法中所存在的问题,提出了交通流到达模式概念,并对基于聚类思想的到达模式识别方法进行了研究。在对交通流到达时序数据提取的基础上,利用基于免疫优化算法的聚类方法实现了对交通流到达模式的识别。对交通流到达模式特征进行了分析,并结合滑动时间窗算法提出了交通高峰小时及峰值流量计算方法。通过实例分析证明了方法的可行性与准确性。  相似文献   
542.
小展弦比飞翼标模为国内自主设计的融合体飞翼通用研究模型,前缘后掠角为65°,展弦比为1.54。风洞试验结果表明小展弦比飞翼标模在跨声速迎角4°开始出现非线性升力,在迎角12°至16°范围内会出现升力突然下降、俯仰力矩突然上扬的现象。为了分析该现象的机理,通过数值模拟的方法研究了小展弦比飞翼标模在马赫0.9时的流动特性,分析了前缘涡的产生、发展直至破裂的整个过程,结果表明:小展弦比飞翼标模在迎角4°开始出现涡升力;随着迎角增加,前缘涡逐渐向内侧移动,涡强和背风面激波的强度也逐渐增加,前缘涡与激波发生交叉干扰并达到一个平衡流态;当前缘涡与激波无法维持既有平衡时则会发生涡破裂,流场急剧变化以达到新的平衡,从而导致升力突然下降并产生抬头力矩增量。  相似文献   
543.
针对某向心涡轮,采用二维流动分析方法设计矩形截面蜗壳,同时采用商用计算流体动力学软件CFX对带蜗壳的向心涡轮流动损失进行数值计算.将计算结果与原型设计中带有集气室的向心涡轮计算结果进行对比.结果表明:蜗壳内流动损失要小于集气室内的流动损失,向心涡轮采用蜗壳后流道内流场有明显改善,效率有所提高.采用设计的矩形截面蜗壳,向心涡轮的功率提高1.7%.通过内部流场的分析,揭示了内部流场结构和损失机理,为向心涡轮的设计和优化提供了一定的参考.   相似文献   
544.
采用数值模拟方法研究了超高负荷涡轮叶栅叶顶间隙流动特征,详细分析了泄漏涡、叶顶分离涡、上通道涡等的流动细节,在此基础上分析间隙高度对流场特征和叶片负荷的影响.结果表明:超高负荷涡轮叶栅叶顶间隙区域存在多种形式的流动分离,泄漏流非常强烈,不仅直接影响上通道涡的形成与发展,使通道涡整体向叶根移动,而且部分泄漏流进入下通道涡;随着间隙高度增加,叶顶分离涡和泄漏涡均明显增强,叶片负荷尤其是叶顶负荷有所降低.   相似文献   
545.
为了深入了解通气空化流动现象,利用高速全流场显示技术,对绕圆头回转体通气空化流型进行实验研究。结果表明,重力效应和通气量对通气空化的多相流流型起主要作用。定义了弗洛德数和通气率两个无量纲数,将绕圆头回转体通气空化分为5种多相流流型,即透明空泡、透明气弹、透明分层、水气混合以及半透明水气混合。流动参数对流型的影响分为2个阶段,即重力起主要作用阶段和重力效应不明显阶段。在重力起主要作用阶段,通气率一定时,随着弗洛德数的增大,附着弹体的空泡倾斜程度变小,弹体上表面的断裂空泡转变为贴着弹体壁面的稳定空泡;弗洛德数一定时,随着通气率的增大弹体上表面断裂空泡的尺度不断增大。在重力效应不明显阶段,通气率一定时,随着弗洛德数的增大,雷诺数变大,流场的湍流强度增大,空泡尾流区域水气交换的程度加剧;弗洛德数一定时,随着通气率的增大,通气空化数减小,绕弹体的云雾状空泡逐渐转变为透明空泡。最后,进一步分析了重力影响下透明空泡脱落的非定常过程,以及反向射流作用下云雾状空泡交替脱落的非定常过程。  相似文献   
546.
压气机转子叶片叶尖流场的低速模化设计   总被引:2,自引:1,他引:2  
针对带进口导叶的高速压气机第1级转子叶片的叶尖流场进行了低速模化设计,为后续的低速压气机叶尖流场损失和失速测试试验做了准备.利用叶片造型和数值模拟方法,以保证高、低速压气机转子叶片表面压力系数及叶片排进、出口主要气动参数分布相似为目标,对高速原型压气机进行低速模化设计,包括调整流道形状,对叶型进行反复迭代,并在进口导叶和1级转子叶片的造型设计上突破了几何相似的限制.最后,对高低速压气机的几何、气动参数和流场结构进行了全面的计算对比分析,证明采用所提出的低速模化设计方法是成功的,实现了在流量系数相同的情况下,加工量因子和转子扩压因子分别为98.16%,94.95%的相似度.   相似文献   
547.
准确显示圆喷管内流场,对于了解和控制该流场具有一定意义,并能为相关数值计算结果提供验证.为此,必须首先解决较厚圆喷管成像畸变带来有效视场减小的问题,采用圆喷管外加校正柱透镜方法可以予以校正.校正柱透镜的设计采用厚透镜焦距计算和ZEMAX软件优化设计相结合,并进行了静态验证,将有效视场从不到30%提高到了大于80%;其次,校正设计时假设圆喷管内折射率为1,并以平行光出射,通过对这个假设的分析,表明其对圆喷管内一定的高温高压流场显示结果影响较小;然后,分析了流场显示的可行方法,给出了动态显示结果;最后指出了该校正方法的可行性和对于定量干涉测量的局限性.该研究对于圆喷管内燃烧流场的研究具有参考意义.   相似文献   
548.
环形中心钝体驻涡燃烧室驻涡腔有无喷射的对比   总被引:2,自引:0,他引:2  
采用三维雷诺平均Navier-Stokes(N-S)方程、renormalization group (RNG) k-ε湍流模型和标准壁面函数对驻涡腔有无喷射的环形中心钝体驻涡燃烧室的冷态流场进行了数值仿真,分析了驻涡腔有无喷射对环形中心钝体驻涡燃烧室涡系结构、驻涡腔流动参数和燃烧室总体性能的影响.结果表明:相比于无喷射时,驻涡腔添加喷射可以使驻涡腔内形成相对稳定的双驻涡结构;驻涡腔喷射的存在使得环形中心钝体驻涡燃烧室出口截面总压损失系数降低约9.2%,并能提高驻涡腔内的平均气流参数;驻涡腔喷射对环形中心钝体驻涡燃烧室出口截面流动参数沿流道高度方向的变化趋势影响不大.   相似文献   
549.
高超声速飞行器流动特征分析   总被引:4,自引:2,他引:4  
在非流线型构件或突起物的扰动效应、高马赫数和低雷诺数极限效应、低湍流度环境效应和由激波或摩擦导致的气动加热效应等4个方面的影响下,未来高超声速飞行器涉及的流动主要表现出这样的特点:典型流动结构强度高、尺度大,如强激波和厚边界层;局部流动结构数量多;激波、膨胀波和边界层结构之间相互干扰十分严重;转捩、压力脉动和一些流动结构对细微因素非常敏感;压力、摩擦应力和热流峰值现象普遍;升阻比屏障难以突破;流场同时依赖大量无量纲参数和有量纲参数,导致实验模拟难度大。本文在回顾传统高超声速流动主要流动现象的基础上,对上述7个方面涉及的典型流动现象的基础研究现状、问题本质和因果关系进行综合描述,讨论如何更有效地面对基础研究和工程实际问题。该文既可为解决典型流动现象中尚未解决的基础研究提供帮助,也可为如何合理地利用有限的已知知识解决工程应用问题提供指导。  相似文献   
550.
(高)超声速流动试验技术及研究进展   总被引:1,自引:1,他引:1  
易仕和  陈植  朱杨柱  何霖  武宇 《航空学报》2015,36(1):98-119
近年来,与高速飞行器相关的(高)超声速流动受到了极大的关注。这类流动所具有的非定常性、强梯度和可压缩性对试验方法和风洞设计技术提出了挑战。超声速纳米示踪平面激光散射(NPLS)技术是由作者所在团队研发的非接触光学测试技术。它能够以较高的空间分辨率来揭示超声速三维流场的一个瞬态剖面的时间解析的流动结构。介绍了NPLS技术以及基于NPLS开发的密度场测量、雷诺应力测量和气动光学波前测量等方法,并回顾了这些技术在超声速边界层、超声速混合层、超声速压缩拐角、激波/边界层相互作用和光学头罩绕流等流动中的应用,清晰地再现了边界层、混合层、激波等典型流场结构及其时空演化特性。另外,为了模拟和研究高空大气条件下边界层自然转捩和超声速混合层的转捩特性,介绍了高超声速静风洞、超-超混合层风洞的设计技术以及层流化喷管的设计方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号