首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   354篇
  国内免费   484篇
航空   1698篇
航天技术   285篇
综合类   380篇
航天   401篇
  2024年   8篇
  2023年   28篇
  2022年   66篇
  2021年   67篇
  2020年   69篇
  2019年   95篇
  2018年   96篇
  2017年   119篇
  2016年   109篇
  2015年   92篇
  2014年   123篇
  2013年   111篇
  2012年   128篇
  2011年   158篇
  2010年   120篇
  2009年   137篇
  2008年   114篇
  2007年   117篇
  2006年   110篇
  2005年   79篇
  2004年   88篇
  2003年   62篇
  2002年   55篇
  2001年   58篇
  2000年   56篇
  1999年   44篇
  1998年   59篇
  1997年   53篇
  1996年   59篇
  1995年   38篇
  1994年   46篇
  1993年   41篇
  1992年   29篇
  1991年   27篇
  1990年   32篇
  1989年   35篇
  1988年   18篇
  1987年   11篇
  1986年   7篇
排序方式: 共有2764条查询结果,搜索用时 31 毫秒
71.
自动铺丝最小间隙路径规划与复合材料锥壳结构制造   总被引:2,自引:1,他引:1  
段沐枫  秦田亮  沈裕峰  徐吉峰 《航空学报》2019,40(2):522423-522423
自动铺丝技术(AFP)是提高复合材料构件制造效率和降低其制造成本的关键技术和重要手段。铺放轨迹的设计是控制自动铺丝工艺质量的关键。对于复杂的结构形式,合理的铺丝路径对保证可制造性及铺贴质量至关重要。本文针对简化后的后机身锥壳特征结构,研究了基于固定角法、测地线法和变角度法的自动铺丝轨迹算法设计,解决了铺放复杂曲面满覆盖问题;总结对比获得了不同铺丝轨迹方法的特点和适用范围。以保证工艺性并满足结构设计铺层方向为原则,选用了带宽为6.35 mm的自动铺丝预浸料完成工艺验证件制造,并通过有限元分析评估了自动铺丝轨迹算法的合理性。结果表明:该结构宜采用测地线法铺放0°方向铺层以减少褶皱;采用固定角法铺放90°方向铺层能够保证连续铺放;采用结合预浸窄带侧弯试验结果的变角度轨迹规划方法铺放此锥类构件±45°方向铺层能够保持最小间隙。铺丝间隙使锥壳结构单层等效模量下降约30%,整体强度下降约10%。因而在结构优化设计时需考虑自动铺丝工艺对安全裕度影响的因素。  相似文献   
72.
二维三轴编织复合材料压缩失效行为的细观有限元模拟   总被引:2,自引:2,他引:0  
刘鹏  郭亚洲  赵振强  邢军  张超 《航空学报》2019,40(7):222865-222865
为研究典型二维三轴编织复合材料(2DTBC)的压缩破坏机理,建立了细观有限元模拟方法体系。提出了反映编织复合材料真实几何特性的单胞模型建模策略,根据Murakami-Ohno损伤理论建立了各向异性损伤模型来模拟纤维束中的损伤起始和扩展行为,通过引入波动系数描述了纤维束的起伏状态,并采用内聚力单元来模拟界面分层。在此基础上,分析得到了二维三轴编织复合材料在压缩载荷下的破坏过程,研究了压缩载荷下纤维束和界面层的损伤演化,探讨了纤维束波动对压缩性能的影响规律。通过与相关试验结果对比,该模型能够准确预测二维三轴编织复合材料在面内压缩载荷下的力学响应和主要失效行为,以及自由边效应。细观失效过程分析结果表明,二维三轴编织复合材料轴向压缩的破坏是由轴向纤维束的纤维压缩失效主导的;横向压缩破坏则是由偏轴纤维束的纤维压缩失效引起的。  相似文献   
73.
舰载机壁板剪切后屈曲承载能力预测与试验验证   总被引:1,自引:1,他引:0  
刘存  张磊  杨卫平 《航空学报》2019,40(4):622300-622300
舰载机着舰撞击对机翼盒段产生巨大的扭矩,蒙皮以剪切形式承受扭矩,这是机翼壁板的重要设计工况。为准确预测加筋壁板剪切后屈曲承载能力,采用MSC.NASTRAN软件MRIKS弧长法,将线性屈曲分析的一致模态缺陷位移作为扰动引入后屈曲分析。考虑材料和几何双重非线性,对整体加筋壁板剪切试验件的后屈曲破坏过程进行模拟、对承载能力进行预测。根据剪切试验结果,进行对比分析。结果表明:有限元模拟的加筋板初始屈曲发生在蒙皮上,长桁足够大的相对刚度使得长桁与蒙皮连接线上出现屈曲节点,随着载荷增大,加筋壁板整体"坍塌",与试验现象一致。有限元分析(FEA)得到的初始屈曲载荷与试验结果的误差为1.25%,预测的极限承载载荷与试验破坏载荷的误差为2.4%。表明引入缺陷后的MSC.NASTRAN弧长法非线性后屈曲计算能够准确预测加筋壁板剪切后屈曲承载能力,为加筋壁板剪切试验和强度设计提供了分析方法。  相似文献   
74.
激光功率与底面状态对选区激光熔化球化的影响   总被引:1,自引:1,他引:0  
冯一琦  谢国印  张璧  乔国文  高尚  白倩 《航空学报》2019,40(12):423089-423089
为研究激光功率与底面状态对选区激光熔化熔池流动的影响,基于离散单元法建立了选区激光熔化铺粉模型,采用粒径分布与实验相符的马氏体时效钢粉末分别铺展到平坦底面和增材底面上,将计算获得的粉末分布导入到基于有限体积法建立的选区激光熔化熔池计算流体力学模型中,研究激光功率和基板底面粗糙度对熔池流动和熔道表面形貌的影响。采用激光单道扫描实验验证铺粉模型和选区激光熔化模型。结果表明:随着激光功率的降低,单位长度的球化数量增加;由于增材底面使熔池润湿性变差,同时又对熔池流动行为产生扰动,使得增材粗糙底面上熔道的球化数量增加。选区激光熔化铺粉模拟及激光单道扫描模拟结果与实验结果吻合较好。本研究可为选区激光熔化工艺中工艺参数的选择提供理论指导。  相似文献   
75.
复合材料裙级间连接结构强度预测   总被引:1,自引:0,他引:1  
针对复合材料裙级间螺栓-柱销连接结构试件,建立了三维有限元逐渐损伤模型。该模型可模拟试件损伤起始、发展及最终破坏的整个过程,并能较好预测试件破坏的模式和强度。该模型包括应力分析、失效判定准则和材料性能退化3个步骤,采用该模型对试件进行了损伤扩展分析和强度预测,计算结果与实验结果较吻合。  相似文献   
76.
机身复合材料加筋板壳的稳定性及强度分析系统   总被引:2,自引:0,他引:2  
随着先进复合材料在飞机主承力结构(如机身结构)中的大量应用,工程上迫切需要大型复合材料加筋板壳的快速建模打样计算、稳定性(刚度)和强度分析的理论和程序支持。基于稳定性理论,并综合复合材料任意加筋板壳有限单元和复合材料层合板壳失效理论等方面的成果,开发了一个机身复合材料加筋板壳结构的稳定性及强度分析程序(CSSAP)。该程序系统不仅可以进行复合材料(加筋)板壳的线性稳定性和强度分析,还可进行非线性稳定性和强度分析;可对较粗的网格划分,得到临界屈曲应变和后屈曲时的应力。通过一些算例与文献结果的对比,表明本程序系统能够满足工程上的精度要求。并且,通过对实际机身一个典型复合材料加筋板壳的计算,表明本程序系统也可用于飞机工程复杂结构的分析。  相似文献   
77.
通过分析热处理工艺、元素含量、晶体取向性以及温度和应力对蠕变性能的影响,得出任何1种影响合金蠕变性能的因素其实质都是改变了合金的微观组织,并最终反映到γ′筏形的完善程度S、终端密度TD和线性密度LD上。S值越接近1,γ′筏形的完善程度越好,蠕变寿命就越长;而TD和LD值越大,微观组织图内筏形交叉和中断的数目就越多,蠕变寿命就越短。  相似文献   
78.
设计了一种基于三角原理的精密柔性定位机构,机构由压电叠堆作为驱动元件,经由柔顺机构输出缩小的位移.进行了理论计算和有限元分析并在样机上进行了静态特性的实验,结果表明该柔顺机构可以实现预期的运动.  相似文献   
79.
结构刚度对翼根螺栓组载荷分布的影响   总被引:4,自引:0,他引:4  
赵群  丁运亮  金海波 《航空学报》2008,29(4):931-936
 由于静不定结构中载荷按刚度分配,对于机翼翼根采用螺栓组连接的结构,其连接螺栓承受的载荷会随结构刚度变化。为考察螺栓载荷随结构刚度的分布特点,结合某新型地效飞行器的机翼结构分析工作,在PATRAN/NASTRAN环境下对该机在翼根附近的主要结构进行了有限元建模。主要研究了因机翼剖面形状导致翼根各处刚度不一致而对螺栓载荷分配造成的影响。另外,考虑到中央翼的桁条对提高其支持刚度也会起到一定作用,因此,比较了中央翼带桁条与不带桁条两种情况下螺栓的受力特性。通过局部模型的有限元分析,总结出一些螺栓载荷的变化规律。得出的结论对于类似的地效飞行器或轻型飞机翼根连接设计具有一定参考价值。  相似文献   
80.
固体火箭发动机对交变环境温度瞬态响应的研究   总被引:2,自引:2,他引:2       下载免费PDF全文
在阐述了环境温度方程、传热方程和粘弹性本构关系的基础上,用有限元法求解了固体火箭发动机对交变环境温度的温度和应力响应,给出了发动机中的温度分布和应力分布,得出了发动机中危险部位和危险季节的结论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号