首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
航空   31篇
航天技术   75篇
  2023年   4篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2010年   4篇
  2009年   14篇
  2008年   14篇
  2007年   12篇
  2006年   9篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1998年   3篇
  1996年   1篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
排序方式: 共有106条查询结果,搜索用时 312 毫秒
71.
This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.  相似文献   
72.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   
73.
The count rate temporal profiles and energy spectra of the solar flares January 15, 17, 20 2005 in hard X-ray and gamma energy bands by data of AVS-F apparatus onboard CORONAS-F satellite are discussed. The energy spectra of these solar flares contain positron line and neutron capture line. Solar flares of January 17 and 20 spectra also contain some nuclear lines. Thin structure with characteristic timescales of 33–92 s is presented on flares temporal profiles in energy bands corresponding to the observed spectral features, which are confirmed by periodogram analysis (confidence level is 99%).  相似文献   
74.
This work studies the sudden increases in total electron content of the ionosphere caused by the very intense solar flare on July 14, 2000. Total electron content (TEC) data observed from a Global Positioning System (GPS) network are used to calculate the flare-induced TEC increment, δTECf, and variation rate, dTECf/dt. It is found that both dTECf/dt and δTECf are closely related with the solar zenith angles. To explain the observation results, we derived a simple relationship between the partial derivative of the flare-induced TEC, ∂TECf/∂t, which is a good approximation for dTECf/dt, and the solar zenith angle χ, as well as the effective flare radiation flux If, according to the well-known Chapman theory of ionization. The derived formula predicted that ∂TECf/∂t is proportional to If and inverse proportional to Chapman function ch(χ). This theoretical prediction not only explains the correlation of dTECf/dt and δTECf with χ as shown in our TEC observation, but also gives a way to deduce If from TEC observation of GPS network. Thus, the present work shows that GPS observation is a powerful tool in the observation and investigation of solar flare effects on the ionosphere, i.e., the sudden ionospheric disturbances, which is a significant phenomenon of space weather.  相似文献   
75.
本文利用我国,苏联,日本和澳大利亚等国16个电离层观测站的资料,分析了1989年3月太阳耀斑引起的大电离层骚扰特征。   相似文献   
76.
The Hα observation is a powerful tool to study the high-energy aspect of solar flares. Spiky brightenings of flare kernels at the Hα center reflect the rapid fluctuation in particle acceleration; linear polarization of Hα emission might be evidence of accelerated protons; red-shifts of the Hα line are caused by the chromospheric evaporation. To study the spiky brightenings of flare kernels with high-cadence imaging at the Hα center, a high-speed Hα camera for the Solar Flare Telescope at Mitaka, NAOJ, had been developed and it started the regular observation in 2001 July. However, the polarimetry and the Dopplermetry are also important and they are required to be carried out in parallel with the high-cadence imaging at the Hα center. Then, we upgraded the original high-speed Hα camera to a new Hα camera system for the multi-aspect Hα observations, which performs all of the high-cadence imaging, the linear polarization measurements, and the off-band imaging for velocity measurements. The new system started the observation in 2002 July. In this paper, the multi-aspect Hα imaging system is described and sample Hα images are presented.  相似文献   
77.
The main properties of 11622 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO-C2) from January 1996 through December 2006 are considered. Moreover, the extended database of solar proton enhancements (SPEs) with proton flux >0.1 pfu at energy >10 MeV measured at the Earth’s orbit is also studied. A comparison of these databases gives new results concerning the sources and acceleration mechanisms of solar energetic particles. Specifically, coronal mass ejections with width >180° (wide) and linear speed >800 km/s (fast) seem they have the best correlation with solar proton enhancements. The study of some specific solar parameters, such as soft X-ray flares, sunspot numbers, solar flare index etc. has showed that the soft X-ray flares with importance >M5 may provide a reasonable proxy index for the SPE production rate. From this work, it is outlined that the good relation of the fast and wide coronal mass ejections to proton enhancements seems to lead to a similar conclusion. In spite of the fact that in the case of CMEs the statistics cover only the last solar cycle, while the measurements of SXR flares are extended over three solar cycles, it is obvious for the studied period that the coronal mass ejections can also provide a good index for the solar proton production.  相似文献   
78.
X-ray spectrometer RESIK has observed spectra in the four wavelength bands from 3.3 Å to 6.1 Å. This spectral range contains many emission lines of H- and He-like ions for Si, S, Ar and K. These lines are formed in plasma of coronal temperatures (T > 3 MK). Analysis of their intensities allows studying differential emission measure distributions (DEM) in temperature range roughly between 3 MK and 30 MK. The aim of present study was to check whether any relationship exists between the character of DEM distribution, the event phase and the X-ray flare class. To do this we have calculated and analyzed the DEM distributions for a set of flares belonging to different GOES classes from the range B5.6–X1. The DEM distributions have been calculated using “Withbroe–Sylwester” multiplicative, maximum likelihood iterative algorithm. As the input data we have used absolute fluxes observed by RESIK in several spectral bands (lines + continuum). Respective emission functions have been calculated using the CHIANTI v. 5.2 atomic data package.  相似文献   
79.
Measurements below several MeV/nucleon from Wind/LEMT and ACE/ULEIS show that elements heavier than Zn (Z=30) can be enhanced by factors of ∼100 to 1000, depending on species, in 3He-rich solar energetic particle (SEP) events. Using the Solar Isotope Spectrometer (SIS) on ACE we find that even large SEP (LSEP) shock-accelerated events at energies from ∼10 to >100 MeV/nucleon are often very iron rich and might contain admixtures of flare seed material. Studies of ultra-heavy (UH) SEPs (with Z>30) above 10 MeV/nucleon can be used to test models of acceleration and abundance enhancements in both LSEP and 3He-rich events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. Although most of the UH fluence arrives during LSEP events, UH abundances are relatively more enhanced in 3He-rich events, with the (34<Z<40)/O ratio on average more than 50 times higher in 3He-rich events than in LSEP events. At energies >10 MeV/nucleon, the most extreme event in terms of UH composition detected so far took place on 23 July 2004 and had a (34<Z<40)/O enhancement of ∼250–300 times the standard solar value.  相似文献   
80.
太阳耀斑是重要的空间天气事件, 有关太阳耀斑参数的预报对于电离层突然骚扰(SID)影响的评估具有实用意义. 本文采用GOES-8卫星上第23太阳周软X射线通量的数据, 通过数值拟合的方法对X级耀斑强度的峰值以及X级耀斑的结束时间进行预测. 利用这种方法对第23太阳周中的X级耀斑进行分析, 最多可以提前17min预测出X级耀斑的峰值, 在预测X级耀斑结束时间时, 预测的X级耀斑结束时间最多可以提前60min左右, 从预报结果来看, 预报方法具有一定的有效性和实用性.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号