首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
航空   31篇
航天技术   75篇
  2023年   4篇
  2021年   1篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2010年   4篇
  2009年   14篇
  2008年   14篇
  2007年   12篇
  2006年   9篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1998年   3篇
  1996年   1篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
排序方式: 共有106条查询结果,搜索用时 46 毫秒
21.
Some flares are known to drive seismic transients into the solar interior. The effects of these seismic transients are seen in helioseismic observations of the Sun’s surface thousands of km from their sources in the hour succeeding the impulsive phase of the flare. Energetic particles impinging from the corona into the chromosphere are known to drive strong, downward-propagating shocks in active region chromospheres during the impulsive phases of flares. H observations have served as an important diagnostic of these shocks, showing intense emission with characteristic transient redshifts. In most flares no detectable transients penetrate beneath the active region photosphere. In those that do, there is a strong correlation between compact white-light emission and the signature of seismic emission. This study introduces the first known H observations of acoustically active flares, centered in the core of the line. The morphology of line-core emission H in the impulsive phase of the flare is similar to that of co-spatial line-core emission in NaD1, encompassing the site of seismic emission but more extended. The latter shows a compact red shift in the region of seismic emission, but a similar feature is known to appear in a conjugate magnetic footpoint from which no seismic emission emanates. Radiative MHD modelling based on the profiles of chromospheric line emission during the impulsive phases of flares can contribute significantly to our understanding of the mechanics of flare acoustic emission penetrating into the solar interior and the conditions under which it occurs.  相似文献   
22.
By the data on intensity-time profiles of the neutron capture line of 2.223 MeV we have studied some characteristics of two solar flares, 28 October 2003 and 20 January 2005 (INTEGRAL and CORONAS-F observations, respectively). The SINP code was applied making allowance for the main processes of neutron interactions and deceleration in the solar plasma, character of neutron source, losses of neutrons and density model of the solar atmosphere. Comparison of the computed time profiles of 2.223 MeV line with observed ones for the flare of 28 October 2003 confirms the results obtained earlier for three other flares. Namely, the effect of density enhancement (EDE) in the sub-flare region, as well as the variations (hardening) of accelerated particle spectrum in the course of the event have been confirmed. The usual modeling procedure by the SINP code, however, seems to be inapplicable to the event of 20 January 2005. Possible causes of density enhancements during some flares and peculiarities of the 20 January 2005 flare are discussed.  相似文献   
23.
Solar energetic particles (SEPs) provide a sample of the Sun from which solar composition may be determined. Using high-resolution measurements from the Solar Isotope Spectrometer (SIS) onboard NASA’s Advanced Composition Explorer (ACE) spacecraft, we have studied the isotopic composition of SEPs at energies ≥20 MeV/nucleon in large SEP events. We present SEP isotope measurements of C, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni made in 49 large events from late 1997 to the present. The isotopic composition is highly variable from one SEP event to another due to variations in seed particle composition or due to mass fractionation that occurs during the acceleration and/or transport of these particles. We show that various isotopic and elemental enhancements are correlated with each other, discuss the empirical corrections used to account for the compositional variability, and obtain estimated solar isotopic abundances. We compare the solar values and their uncertainties inferred from SEPs with solar wind and other solar system abundances and find generally good agreement.  相似文献   
24.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   
25.
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes.  相似文献   
26.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   
27.
Detailed in situ studies of magnetic reconnection and particle acceleration, which play a crucial role in the release and redistribution of energy in solar flares, can be performed in tokamak plasmas under conditions resembling those of the flaring solar corona. Recent measurements and modelling of fast particle production during reconnection events in the Mega-Amp Spherical Tokamak (MAST) are described. Specifically, observations in this device of electron acceleration during edge localised modes, and of both ion and electron acceleration during merging-compression plasma start-up, are presented, and possible implications of these studies for particle acceleration in flares are discussed. The results from MAST lend weight to the conjecture that large numbers of ions are accelerated to sub-MeV energies in flares.  相似文献   
28.
The goal is to study parameters of drifting type III bursts, and find out the emission mechanism of these bursts and understand what factors affect instantaneous spectral bandwidth of these bursts.  相似文献   
29.
3He-rich solar energetic particle (SEP) events show huge enrichments of 3He and association with kilovolt electrons and Type-III radio bursts. Observations from a new generation of high resolution instruments launched on the Wind, ACE, Yohkoh, SOHO, TRACE, and RHESSI spacecraft have revealed many new properties of these events: the particle energy spectra are found to be either power-law or curved in shape, with the 3He spectrum often being distinctly different from other species. Ultra-heavy nuclei up to >200 amu are found to be routinely present at average enrichments of >200 times solar-system abundances. The high ionization states previously observed near ∼1 MeV/nucleon have been found to decrease towards normal solar coronal values in these events. The source regions have been identified for many events, and are associated with X-ray jets and EUV flares that are associated with magnetic reconnection sites near active regions. This paper reviews the current experimental picture and theoretical models, with emphasis on the new insights found in the last few years.  相似文献   
30.
We investigate numerically the dynamical evolution of a boundary driven, topologically complex low plasma. The initial state is a simple, but topologically nontrivial 3D magnetic field, and the evolution is driven by forced motions on two opposite boundaries of the computational domain. A large X-type reconnection event with a supersonic one-sided jet occurs as part of a process that brakes down the large scale topology of the initial field. An energetically steady state is reached, with a double arcade overall topology, in which the driving causes continuous creation of small scale thin current sheets at various locations in the arcade structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号