首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   85篇
  国内免费   259篇
航空   797篇
航天技术   79篇
综合类   107篇
航天   31篇
  2024年   2篇
  2023年   16篇
  2022年   11篇
  2021年   34篇
  2020年   30篇
  2019年   36篇
  2018年   29篇
  2017年   40篇
  2016年   70篇
  2015年   58篇
  2014年   34篇
  2013年   35篇
  2012年   53篇
  2011年   89篇
  2010年   44篇
  2009年   58篇
  2008年   48篇
  2007年   51篇
  2006年   35篇
  2005年   26篇
  2004年   22篇
  2003年   20篇
  2002年   14篇
  2001年   14篇
  2000年   21篇
  1999年   9篇
  1998年   13篇
  1997年   13篇
  1996年   13篇
  1995年   14篇
  1994年   13篇
  1993年   11篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   10篇
  1988年   6篇
排序方式: 共有1014条查询结果,搜索用时 31 毫秒
961.
通过风洞试验对双三角翼的内涡襟翼及外涡襟翼进行了研究.探讨了影响涡襟翼效率的各种因素及其规律,其中包括机翼前缘区状态、涡襟翼形状、涡襟翼偏度、内、外涡襟翼的搭配以及后缘襟翼效率等.尤其是根据内外翼涡场的不同研究了复合平面形状机翼内涡襟翼与外涡襟翼设计上的特点,为设计双三角翼的涡襟翼提供了参考数据.研究结果表明,正确设计前缘涡襟翼与后缘襟翼可以优化大后掠双三角机翼的低速性能.  相似文献   
962.
压敏漆图像数据处理技术   总被引:1,自引:1,他引:0  
针对压敏漆工程应用的迫切需求,开发了压敏漆图像数据处理软件.采用了两种图像配准方法,并对二者的配准效果进行了对比.介绍了两种图像数据三维还原方法,采用直接线性变换将二维图像坐标与模型空间坐标联系起来,得到了模型表面的真实压力分布数据.引用作者在超声速风洞中完成的三角翼模型压敏漆试验的部分结果,验证了图像数据处理程序的有效性.  相似文献   
963.
某型飞机机翼防冰系统计算分析   总被引:5,自引:4,他引:1  
主要针对某型飞机机翼的热气防冰系统计算分析,得到水滴直径变化对撞击极限的影响,飞行马赫数变化对机翼表面换热系数的影响,分析了不同飞行高度湿表面和干表面的温度分布.结果表明水滴撞击区随着水滴直径增加而增大;机翼表面的换热系数随飞行马赫数的增加而增加;在相同计算条件下,干表面温度比湿表面温度要高.对多个典型截面以及其在不同飞行状态的计算结果表明,在给定的计算条件下,4km及7km时防冰系统工作都是有效的,7km时表面部分位置湿表面温度低于0℃.   相似文献   
964.
基于准稳态气动力模型,推导了仿蜜蜂类昆虫扑翼气动力和力矩估算公式,建立了扑翼运动函数.将仿蜜蜂类昆虫扑翼视为空间运动刚体,在其动力学方程基础上,采用分层控制策略研究悬停控制问题.外层为位置控制,X和Y位置应用PD控制算法,Z位置应用切换控制方法;内层姿态控制采用切换控制方法,并选择了一套机翼运动参数用于切换控制.最后进行了仿蜜蜂类昆虫扑翼悬停控制仿真试验,试验结果表明所设计的控制策略是有效的,一旦昆虫扑翼受到干扰偏离平衡位置后,通过自动调节能够回到平衡位置附近.   相似文献   
965.
自适应机翼技术的分类和实现途径   总被引:7,自引:0,他引:7  
自适应机翼技术研究可分为通过机翼结构较小尺度变形的流动控制设计和较大尺度改变机翼几何构型的自适应结构设计两个范畴。改变机翼构型的自适应结构又包括可变前后缘结构、扭转机翼盒段结构、可变展弦比机翼结构这三种实现方式。根据目前自适应机翼技术的研究现状,归纳出了实现机翼自适应功能的两种途径,其中,采用智能材料结构进行驱动控制的研究代表了自适应机翼技术的发展趋势,而基于传统材料结构的自适应机翼技术则在现阶段更具有工程应用价值。  相似文献   
966.
实现柔性机翼后缘形状变化的综合优化(英文)   总被引:2,自引:0,他引:2  
Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures to carry out required shape changes under distributed pressure loads. In order to minimize the deviation of the deformed shape from the target shape, this method uses MATLAB and ANSYS to optimize the distributed compliant mechanisms by way of the ground approach and genetic algorithm (GA) to remove the elements possessive of very low stresses. In the optimization process, many factors should be considered such as airloads, input displacements, and geometric nonlinearities. Direct search method is used to locally optimize the dimension and input displacement after the GA optimization. The resultant structure could make its shape change from 0 to 9.3 degrees. The experimental data of the model confirms the feasibility of this approach.  相似文献   
967.
提出了一种可用于民航机翼的双目标优化设计方法.优化中的设计变量为给定机翼沿展向若干个剖面的厚度与扭角,优化目标为固定升力系数下的升阻比和机翼容积.采取N-S(Navier-Stokes)方程作为流场求解器,Powell方法作为优化求解方法,对Lockheed-AFSOR Wing A 某民航机翼进行了优化设计.在马赫数为0.6217条件下,Wing A 机翼双目标优化结果优于单目标优化结果.对某实际应用的民航机翼在巡航马赫数为0.78、升力系数为0.48的优化结果也表明,该方法能有效提高机翼升阻比和容积.相对初始机翼,双目标优化机翼最大相对厚度在翼根处增大,翼梢处减小,扭角绝对值相对初始机翼沿展向均减小.该双目标优化设计方法优于常规的单目标优化设计方法,可以为民航机翼的工程设计提供有益的参考.  相似文献   
968.
大展弦比飞翼构型的横航向操纵特性   总被引:4,自引:2,他引:2  
大展弦比飞翼构型取消了垂尾和方向舵,通常采用开裂式方向舵和多组升降副翼组合来实现滚转和偏航操纵.通过与常规的侧力类方向舵对比,揭示了阻力类开裂式方向舵的操纵机理,包括偏航和滚转力矩产生原理以及操纵效能等.对大展弦比飞翼构型的横航向配平能力和协调机动能力进行了分析,并与常规飞机进行了对比,研究结果表明单发失效对偏航操纵效能要求最高,需要适当地增加开裂式方向舵的舵容量或对现有布局进行改进设计.   相似文献   
969.
高精度航天器微振动力学环境分析   总被引:15,自引:5,他引:10  
高精度航天器由于其指向精度和分辨率水平极高,需要考虑微振动的影响。文章给出了微振动的定义,分析了微振动特性、国外研究现状、建模特点及方法,总结归纳了高精度航天器星体内部的主要扰动源。给出了反作用轮、斯特林低温制冷器、星载敏感器以及太阳翼等典型扰动源扰动的时域或频域模型及微振动隔离模型,并进行了相应的仿真,从系统层面评估了微振动对高精度航天器性能的影响,可供高精度航天器设计时参考。  相似文献   
970.
为增加小展弦比飞翼布局飞机横向控制效能,设计了可提供飞机滚转力矩的涡流控制方案,在此基础上研究了三角翼前缘非对称垂直喷流对前缘涡破裂位置和结构的影响。应用三维任意坐标系下的雷诺平均N-S方程数值模拟方法和Spalart-Allmaras方程湍流模型,对小展弦比飞翼布局飞机前缘非对称喷流及无喷流情况下的绕流进行了研究分析。结果表明:与无喷流情况相比,喷流速度、喷口压力、飞行迎角的不同造成了涡破裂点的改变以及涡的强度和涡轴位置的变化,这些因素最终引起流场变化,并产生不对称力和力矩;喷流产生的直接力和力矩与飞行状态无太大关系;垂直喷流在进行横向控制同时产生较小的偏航力矩,对阻力的影响也较小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号