首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   190篇
  国内免费   557篇
航空   1514篇
航天技术   140篇
综合类   172篇
航天   96篇
  2024年   5篇
  2023年   20篇
  2022年   37篇
  2021年   73篇
  2020年   42篇
  2019年   56篇
  2018年   50篇
  2017年   73篇
  2016年   61篇
  2015年   61篇
  2014年   92篇
  2013年   69篇
  2012年   77篇
  2011年   93篇
  2010年   61篇
  2009年   91篇
  2008年   85篇
  2007年   82篇
  2006年   66篇
  2005年   60篇
  2004年   54篇
  2003年   60篇
  2002年   55篇
  2001年   38篇
  2000年   40篇
  1999年   27篇
  1998年   39篇
  1997年   31篇
  1996年   37篇
  1995年   28篇
  1994年   57篇
  1993年   37篇
  1992年   36篇
  1991年   46篇
  1990年   28篇
  1989年   36篇
  1988年   16篇
  1987年   3篇
排序方式: 共有1922条查询结果,搜索用时 31 毫秒
511.
针对航空发动机薄壁结构热声疲劳问题,采用耦合的有限元/边界元法,对GH188薄壁结构进行动力学响应计算,采用改进的雨流计数法和Morrow平均应力模型,结合Miner线性累积损伤理论对薄壁结构疲劳寿命进行了预估。基于高温行波管试验器开展了GH188薄壁结构高温声激振疲劳试验研究,获取了薄壁结构在不同温度和声载荷作用下的模态频率、应力/应变响应和疲劳寿命结果。仿真计算结果与试验结果对比分析表明:数值仿真对结构破坏位置判断准确,破坏位置均为结构根部,结构1阶热模态频率具有一致性,误差0.49%~2.09%之间,X方向应力响应峰值集中在基频附近,随温度升高,结构发生软化刚度下降,响应峰值向左发生偏移,且预测水平与试验一致,误差在1%~3%之间,验证了薄壁结构热声响应计算方法与计算模型的准确性。结构疲劳寿命随温度和声压级的上升而均呈现下降趋势,疲劳破坏时间的预估值与试验结果在一个量级之内,误差在3~3.5倍之间,满足工程级寿命预测要求,验证了薄壁结构热声疲劳寿命预估方法的有效性。   相似文献   
512.
针对单晶气冷涡轮叶片的服役载荷特征,以镍基单晶高温合金DD6为对象,设计开展了薄壁圆管试样热机械疲劳(TMF)试验。结果表明:DD6变形响应呈现出明显的TMF棘轮效应,且与相位角、机械载荷水平等密切相关;在相同载荷条件下,同相(IP)TMF寿命总是明显短于反相(OP)。引入高温保载时间或增大机械载荷均会引起棘轮应变的明显增加,缩短结构寿命。结合断口和纵向切片分析,识别了不同载荷条件下影响单晶寿命的关键损伤因素,其中IP TMF主导损伤机理为蠕变和疲劳,而OP TMF主导损伤机理为氧化和疲劳。   相似文献   
513.
针对航空涡扇发动机压气机叶片/轮盘连接结构,设计了一种燕尾榫结构高温微动疲劳试验加载装置,开展了TC11钛合金在200℃及500℃下的微动疲劳试验。通过动态位移及动态应变法实现对燕尾榫微动疲劳萌生寿命的监测。试验中发现微动疲劳裂纹均萌生在燕尾榫接触区域的下边缘,且接触表面存在大量的微动磨屑,属于典型的微动疲劳失效形式。试验结果表明:温度环境对微动疲劳寿命的影响较为明显。随着试验温度的升高,试验件的微动疲劳寿命会逐渐减小。   相似文献   
514.
铸件在铸造过程中会不可避免地产生显微孔洞,严重降低了铸件疲劳寿命。本文综述铸件中显微孔洞特征(尺寸、形状和空间分布)对疲劳寿命的影响,包括显微孔洞类型,孔洞特征分布规律,孔洞最大尺寸预测方法和含孔洞材料疲劳寿命预测方法;通过对疲劳寿命预测模型的回顾,发现目前含显微孔洞铸件疲劳寿命预测方法还不成熟;展望了显微孔洞特征对疲劳寿命影响的研究。提出未来应该依靠先进光源展开原位疲劳实验或者分子动力学仿真来研究孔洞疲劳失效微观机理,建立考虑不同显微孔洞特征参数,以及不同孔洞间相互影响的疲劳寿命定量预测模型。  相似文献   
515.
徐颖强  陈仙亮  曹栋波 《航空学报》2018,39(5):221936-221936
在航空航天领域由于成本、时间周期等原因进行疲劳寿命及可靠性评估时样本量通常极少(m=1或2),利用相容性检验方法可对样本量进行扩充。常规的Wilcoxon秩和检验和K-S(Kolmogorov-Smirnov)检验适用于小样本情形,而极小样本相容性检验方面研究较少,且缺乏对方法合理性的详细说明和对不同方法检验功效优劣的比较。航空航天产品疲劳寿命多服从正态分布,因此本文主要以正态分布作为研究对象。利用Monte Carlo仿真发现从某一正态分布Nμ,σ2)中随机抽取两个样本x1x2计算均值μ1和标准差σ1后构建新正态分布Nμ1,σ12),其±σ1、±2σ1和±3σ1范围内的点落在原正态分布Nμ,σ2)±3σ范围内的概率依次为99.80%、98.13%和97.37%。在此基础上针对现场试验数据样本量为2的情况,本文提出利用3σ原则对先验信息数据进行相容性检验从而扩充样本量的方法。将该方法与两种文献方法对比后发现其误差率明显更低并呈现出检验性能随先验数据增加而不断提高的优势。  相似文献   
516.
施祎  杨晓光  苗国磊  石多奇 《推进技术》2019,40(7):1606-1612
为了进一步研究疲劳裂纹在萌生阶段的特点,本文结合数字图像相关方法 (Digital Image Correlation Method,DIC)设计并组建了配合液压疲劳试验机加载的原位观测系统。同时针对DIC测量方法中的关键技术进行研究,分别提出了一种可应用于视场宽度2mm下DIC计算的微小散斑制备方法,以及空间调节方法以提高试验可靠性。最后应用该系统开展针对航空发动机火焰筒材料GH536的微裂纹自然萌生试验。通过采取两种不同的DIC分析策略,分别获得疲劳过程中的总应变幅以及最大累积塑性应变的演化规律。结果表明总应变幅演化可确定自然萌生裂纹位置,最小可识别50μm裂纹;最大累积塑性应变分析可得萌生寿命占比约85%,并在裂纹出现后塑性应变急剧增加。  相似文献   
517.
高速飞行器薄壁结构在高速气流冲击下,产生的热载荷、声载荷、随机振动载荷会使结构产生非线性大绕度动力学响应和高周疲劳破坏。对3组一端固支GH188薄壁板开展行波管热声疲劳试验,研究了温度和声压级对薄壁板的响应及寿命的影响,得到在热声载荷下薄壁结构的频率和动应力响应以及可能产生破坏的危险位置和疲劳寿命。根据耦合的有限元/边界元法对薄壁结构的非线性响应进行数值仿真,采用改进的雨流计数法和Morrow平均应力模型预估结构的疲劳寿命,与试验结果对比:频率响应误差在1%以内,基频应力响应误差在1%~3%,寿命值在3倍左右,验证了热声疲劳寿命预估模型的有效性。随后分析了薄壁结构的热振特性,分析发现:在声载荷和随机振动载荷下,结果基频响应起主导作用,且变化趋势相似,当基频动应力水平相同且主要研究基频附近疲劳寿命时,可用热振试验代替热声试验;当频率较宽时,热振疲劳寿命明显低于热声疲劳寿命。  相似文献   
518.
根据所研究滚轮滚针轴承局部受载和支撑结构特点,建立考虑凸轮局部受载影响的轴承全柔性体有限元仿真模型,系统分析了轴承加载载荷、游隙和安装偏斜角对轴承的力学性能、刚度和寿命的影响,并通过数值和试验方法对仿真结果的正确性进行验证。结果表明:局部受载条件下,径向载荷和偏斜角对轴承接触性能和寿命产生较大影响,轴承游隙对轴承接触性能和寿命的影响较小;径向载荷和偏斜角的增加,使得轴承承载区域减小,原对称“驼峰”型滚针母线的接触压力分布逐渐向偏斜角方向过渡,造成“一高一低”的母线压力分布形貌,最大接触压力增加,使得轴承寿命快速下降,但在极限载荷和偏转角条件下,仍满足轴承设计寿命指标要求。   相似文献   
519.
针对某航空发动机在试飞过程中连续出现多起滑油箱油位异常下降情况,对滑油系统进行排查分析,确认为由滑油泵皮碗裂纹引起的。经对皮碗故障件进行复查、断口分析、设计复查等工作,确定了皮碗裂纹产生的原因。结果表明:滑油泵级间壳体上通油孔与增压泵出口相连,使得皮碗封严压力过大,为导致皮碗裂纹故障发生的主要原因;泵轴与皮碗装配过盈量大促进了皮碗裂纹故障萌生和扩展。通过对滑油泵结构参数优化设计,降低皮碗承载油压和摩擦力,提高皮碗密封性能和寿命,从而有效避免此类故障再次发生。  相似文献   
520.
利用扫描电镜原位观察的方法研究了粉末高温合金FGH96中不同级别的原始颗粒边界(PPB)在550℃下对合金高周疲劳力学行为的影响。结果表明:采用等离子旋转电极(PREP)制粉+热等静压(HIP)工艺制备的FGH96合金中PPB主要由大尺寸γ'相和碳化物组成;不同级别的PPB对高周疲劳裂纹萌生和扩展均无显著影响,裂纹萌生于晶粒内部,裂纹扩展受晶界与应力轴角度影响,穿晶或沿晶扩展;在裂纹快速扩展区和瞬断区,PPB级别严重的FGH96合金断口呈现穿晶和沿PPB断裂的形貌。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号