首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2764篇
  免费   601篇
  国内免费   901篇
航空   2646篇
航天技术   618篇
综合类   375篇
航天   627篇
  2024年   20篇
  2023年   87篇
  2022年   134篇
  2021年   201篇
  2020年   208篇
  2019年   172篇
  2018年   186篇
  2017年   209篇
  2016年   223篇
  2015年   193篇
  2014年   236篇
  2013年   208篇
  2012年   257篇
  2011年   267篇
  2010年   196篇
  2009年   182篇
  2008年   163篇
  2007年   214篇
  2006年   156篇
  2005年   113篇
  2004年   95篇
  2003年   81篇
  2002年   60篇
  2001年   57篇
  2000年   60篇
  1999年   37篇
  1998年   41篇
  1997年   33篇
  1996年   33篇
  1995年   22篇
  1994年   25篇
  1993年   23篇
  1992年   17篇
  1991年   17篇
  1990年   11篇
  1989年   14篇
  1988年   10篇
  1987年   3篇
  1986年   2篇
排序方式: 共有4266条查询结果,搜索用时 265 毫秒
861.
黄美伊  梁子璇  崔平远 《宇航学报》2021,42(12):1550-1558
针对不规则小行星表面附着任务需求,提出了一种基于动态邻域搜索的可达区生成方法。首先,建立了可达区数学模型,并采用质心距映射函数对非定点附着的终端位置约束进行了处理。在此基础上,将可达区的优化问题转化为附着基准点计算、边界起始点计算和边界点搜索三个子问题。针对附着基准点与边界起始点,分别通过最小燃耗轨迹优化与极限燃耗轨迹优化求解;针对边界点,设计了导向式动态邻域搜索方法,将复杂的非定点着陆优化问题简化为定点着陆燃耗优化与边界插值。最后,以小行星433 Eros为对象,对所提出的可达区生成方法进行了仿真。结果表明,该方法能够生成不规则小行星表面的可达区,具有较高的搜索求解效率,并适用于不同的初始位置和燃耗条件。  相似文献   
862.
《中国航空学报》2021,34(2):301-317
The paper presented topology optimization of 2D and 3D Nanofluid-Cooled Heat Sink (NCHS). The flow and heat transfer problem in the NCHS was treated as a single-phase nanofluid based convective heat transfer model. The temperature-dependent fluid properties were taken into account in the model due to the strong temperature-dependent features of nanofluids. An average temperature minimum problem was studied subject to the fluid area and energy dissipation constraints by using the density method. In the method, the design variable is updated according to the gradient information obtained by an adjoint based sensitivity analysis process. The effects of the energy dissipation constraint, temperature-dependent fluid properties and nanofluid characteristics on optimal configurations of NCHS were numerically investigated with following conclusions. Firstly, branched flow channels in the optimal configuration increased with the rise of the allowed energy dissipation. Secondly, temperature-dependent fluid properties were significant for obtaining the appropriate optimal results with best cooling performance. Thirdly, heat transfer performances of optimal configurations were enhanced by reducing the nanoparticle diameter or increasing the nanoparticle volume fraction. Fourthly, the optimal configuration for nanofluid had better cooling performance than that for its base fluid.  相似文献   
863.
《中国航空学报》2021,34(5):27-38
Studies show that different geometries of a Variable Cycle Engine (VCE) can be adjusted during the transient stage of the engine operation to improve the engine performance. However, this improvement increases the complexity of the acceleration and deceleration control schedule. In order to resolve this problem, the Transient-state Reverse Method (TRM) is established in the present study based on the Steady-state Reverse Method (SRM) and the Virtual Power Extraction Method (VPEM). The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE. Obtained results are compared with the conventional component-based model from different aspects, including the accuracy and the convergence rate. The TRM is then employed to optimize the control schedule of a VCE. Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model. On the other hand, it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45% and 54%, respectively. Meanwhile, the surge margin of compressors, fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria. It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.  相似文献   
864.
霍尔推力器磁路设计主要通过常温静态磁场仿真得到,并实测推力器非工作状态常温磁场进行复核。大功率霍尔推力器将面临更为严峻的热问题,推力器工作时磁路系统受高温影响,因此在常温下仿真得到的磁场位形会因温度升高而产生偏移,不能反映推力器真实工作时的磁场情况。为研究霍尔推力器工作时热量对磁路系统的影响,通过热磁耦合仿真对10kW磁屏蔽霍尔推力器的热态磁场分布进行研究,并对热态、常温仿真结果进行了对比,发现在阳极附近的径向磁感应强度Br的差异比放电室出口更大。常温设计的磁屏蔽构型在热态时偏离磁屏蔽,磁场和壁面最大不符合度达到13%,通过陶瓷出口型面修正后重新获得磁屏蔽效果,使最大不符合度降低到4.8%以下。合理热设计有助于降低热载荷,热仿真得到磁路系统最高温度低于500℃,低于0.78倍的居里温度Tc磁性急剧转变点,不会出现磁性能急剧下降,但热量对磁屏蔽霍尔推力器磁场构型的影响是应该考虑的。  相似文献   
865.
As an important index affecting the aerodynamic performance and the structural strength of hollow turbine blades, the wall-thickness precision of the blade is mainly inherited from the positional relationship between the corresponding wax pattern and the internal ceramic core. However, due to locating errors, the actual position of ceramic core is always deviated from the ideal position, which makes it difficult to guarantee the wall-thickness precision of the wax pattern. To solve this problem, a wall-thickness compensation strategy is proposed in this paper. Firstly, based on the industrial computed tomography (ICT) technique and curve matching algorithms, a model reconstruction method is developed, with which the 3D model of a trial wax pattern can be easily constructed. After that, focusing on eliminating the wall-thickness errors of the trial wax pattern, an optimization method for the pose of the ceramic core in the wax pattern is proposed. Then, by mapping the optimal pose of the ceramic core to length adjustments of the locating rods, the wall-thickness errors of the wax pattern can be greatly reduced. A case study is also given to illustrate the effectiveness of the proposed compensation strategy.  相似文献   
866.
Blended-Wing-Body(BWB) configuration, as an innovative transport concept, has become a worldwide research focus in the field of civil transports development. Relative to the conventional Tube-And-Wing(TAW) configuration, the BWB shows integrated benefits and serves as a most promising candidate for future ‘‘green aviation". The objective of the present work is to figure out the effects of the stability margin and Thrust Specific Fuel Consumption(TSFC) on the BWB design in the framework of Multi-Disciplinary Optimization(MDO). A physically-based platform was promoted to study the effect static stability margin and engine technology level. Low-order physically based models are applied to the evaluation of the weight and the aerodynamic performance. The modules and methods are illustrated in detail, and the validation of the methods shows feasibility and confidence for the conceptual design of BWB aircrafts. In order to find out the relation between planform changes and the selection of stability and engine technology level, two sets of optimizations are conducted separately. The study proves that these two factors have dominant effects towards the optimized BWB designs in both aerodynamic shapes, weight distribution, which needs to be considered during the MDO design process. A balance diagram analysis is applied to find out a reasonable static stability margin range. It can be concluded that a recommended stability margin of a practical BWB commercial aircraft can be half of that of a conventional TAW design.  相似文献   
867.
Hypersonic vehicles are receiving increased attention within the aerospace community due to their high cruise speed and long-range capabilities. In this paper, a modified Sequential Approximate Optimization method is proposed for an optimized aerodynamic design of a hypersonic vehicle. As part of this approach, a constrained experimental design method is developed to handle the constraints more efficiently. A radial basis function is used to surrogate time-consuming CFD analysis. An efficient and more robust numerical mesh morphing scheme for the hypersonic vehicle is developed for the generation of high-quality meshes. Within this paper, a novel adaptive infilling strategy is proposed which uses an inaccurate search technique coupled with an elite archive. This allows the location of a more promising sample region and hence improves the surrogate accuracy, thereby further enhancing the optimization efficiency. A hypersonic vehicle aerodynamic design problem is solved using the proposed approach and satisfactory results are obtained at much lower computational costs. The lift-to-drag ratio is increased by 23.8% when compared with the base configuration while also satisfying the volume and lift constraints. The pressure and Mach contours have been compared with those of the base configuration and the results demonstrate the strength of the optimized configuration. The modified sequential approximate optimization for designing an improved hypersonic vehicle is worth referencing in future work.  相似文献   
868.
遗传算法是一种可以混合整型、离散型和连续型变量一起使用的新兴优化算法,在单或多目标带约束优化设计领域有广阔的应用空间。本文在算例中采用与先验法相结合的遗传算法,以总体参数为设计变量,飞行性能和结构要求为约束条件,换算生产率为目标函数,并使用罚函数法处理成无约束的适应度函数,建立优化设计模型。对本文算例计算结果进行分析,可以使遗传算法更好地应用到直升机优化设计领域。  相似文献   
869.
在无刷直流时机的位置伺服系统中,采用了基于状态空间模型的优化设计方法,综合出了次优控制器、建立了广义误差系统状态方程,并利用积分罚函数分段一经法处理伺服系统不等式约束的问题,得出了次优控制算法,经仿真证实,有杉该优化方法设计出的伺服系统的稳态跟踪误差为零;稳成输出不受阶跃干扰的影响;并具有期望的瞬态响应特性。  相似文献   
870.
满应力优化设计方法的集约几何规划法   总被引:1,自引:0,他引:1  
将集约几何规划法应用在连续梁和刚架的主体优化设计中,计算了两跨连续梁和门式钢框架,均得到满意结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号