首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   14篇
  国内免费   19篇
航空   136篇
航天技术   58篇
综合类   8篇
航天   3篇
  2023年   8篇
  2022年   8篇
  2021年   3篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   5篇
  2016年   2篇
  2015年   6篇
  2014年   10篇
  2013年   7篇
  2012年   5篇
  2011年   3篇
  2010年   9篇
  2009年   6篇
  2008年   13篇
  2007年   13篇
  2006年   22篇
  2005年   8篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   17篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1988年   2篇
  1986年   1篇
  1984年   3篇
排序方式: 共有205条查询结果,搜索用时 448 毫秒
121.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   
122.
Different kinds of coronal holes are sources of different kind of solar winds. A successful solar wind acceleration model should be able to explain all those solar winds. For the modeling it is important to find a universal relation between the solar wind physical parameters, such as velocity, and coronal physical parameters such as magnetic field energy. To clarify the physical parameters which control the solar wind velocity, we have studied the relation between solar wind velocity and properties of its source region such as photospheric/coronal magnetic field and the size of each coronal hole during the solar minimum. The solar wind velocity structures were derived by using interplanetary scintillation tomography obtained at Solar-Terrestrial Environment Laboratory, Japan. Potential magnetic fields were calculated to identify the source region of the solar wind. HeI 1083 nm absorption line maps obtained at Kitt Peak National Solar Observatory were used to identify coronal holes. As a result, we found a relation during solar minimum between the solar wind velocity and the coronal magnetic condition which is applicable to different kind of solar winds from different kind of coronal holes.  相似文献   
123.
We propose a new phase-mixing sweep model of coronal heating and solar wind acceleration based on dissipative properties of kinetic Alfvén waves (KAWs). The energy reservoir is provided by the intermittent ∼1 Hz MHD Alfvén waves excited at the coronal base by magnetic restructuring. These waves propagate upward along open magnetic field lines, phase-mix, and gradually develop short wavelengths across the magnetic field. Eventually, at 1.5–4 solar radii they are transformed into KAWs. We analyze several basic mechanisms for anisotropic energization of plasma species by KAWs and find them compatible with observations. In particular, UVCS (onboard SOHO) observations of intense cross-field ion energization at 1.5–4 solar radii can be naturally explained by non-adiabatic ion acceleration in the vicinity of demagnetizing KAW phases. The ion cyclotron motion is destroyed there by electric and magnetic fields of KAWs.  相似文献   
124.
In the spherical accretion onto massive objects, the matter may be heated up to temperatures as high as 1012 °K. In such a hot plasma, the thermal bremsstrahlung (e-e and e-p) and π° decay from inelastic collisions of protons are the main γ-ray sources. We determined the γ -ray production spectra from the π° decay and from bremsstrahlung for different temperatures. The expected γ-ray spectra were evaluated too in order to fit experimental data. We have fitted COS B data from 3C 273 using a two temperatures plasma model. The best fit is for
(M8 is the black hole mass in 108 M) which gives . The hard X-ray measurements do not contradict the bremsstrahlung spectrum.  相似文献   
125.
Astrophysical limitations do not exclude the possibility of some number of dark matter primordial Black Holes (BH) being seeded in the interiors of the Earth at the epoch of planet condensation in the young Solar System. We show that limitations on the neutrino radiation due to the BH quantum evaporation and accretion growth of BH mass completely forbid the existence of primordial BH of any mass in the Earth.  相似文献   
126.
The Galactic microquasar GRS 1915 + 105 exhibits at least seventeen types of variability classes. Intra and inter class transitions are reported to be observed within seconds to hours. Since the observation was not continuous, these classes appeared to be exhibited in a random order. Our goal is to predict a sequence of these classes. In this paper, we compute the ratio of the photon counts obtained from the power-law component and the blackbody component of each class and call this ratio as the ‘Comptonizing efficiency’ (CE) of that class. We sequence the classes in the ascending order of CE and find that this sequence matches with a few class transitions observed by RXTE satellite and IXAE instruments on board IRS-P3. A change in CE corresponds to a change in the optical depth of the Compton cloud. Our result implies that the optical depth of the Compton cloud gradually rises as the variability class becomes harder.  相似文献   
127.
In aero-engines, mortise-tenon joint structures are often used to connect the blades to the turbine disk. The disadvantages associated with conventional manufacturing techniques mean that a low-cost, high-efficiency, and high-quality nickel-based mortise–tenon joint structure is an urgent requirement in the field of aviation engineering. Electrochemical cutting is a potential machining method for manufacturing these parts, as there is no tool degradation in the cutting process and high-quality s...  相似文献   
128.
以玻璃纤维增强树脂基复合材料及其复合构件台阶孔为研究对象,通过性能分析、工装和刀具设计、工艺参数优化等研究加工中各因素对台阶孔的影响。实验结果表明,采用镶合金复合钻头25°(螺旋角p)/15°(后角α),使用专用的工艺装置给钻削区材料施加预压应力,钻头转速为250、315 r/min、进给量为0.06、0.1mm/r时,孔的加工质量达到最优。  相似文献   
129.
电镀立方氮化硼砂轮在高精度、低表面粗糙度值的超深小孔磨削中,可大幅提高砂轮轴刚性,从而提高加工质量和生产效率。  相似文献   
130.
Summarized below are the discussions of working group 3 on "Coronal hole boundaries and interactions with adjacent regions" which took place at the 7th SOHO workshop in Northeast Harbor, Maine, USA, 28 September to 1 October 1998. A number of recent observational and theoretical results were presented during the discussions to shed light on different aspects of coronal hole boundaries. The working group also included presentations on streamers and coronal holes to emphasis the difference between the plasma properties in these regions, and to serve as guidelines for the definition of the boundaries. Observations, particularly white light observations, show that multiple streamers are present close to the solar limb at all times. At some distance from the sun, typically below 2 R, these streamers merge into a relatively narrow sheet as seen, for example, in LASCO and UVCS images. The presence of multiple current sheets in interplanetary space was also briefly addressed. Coronal hole boundaries were defined as the abrupt transition from the bright appearing plasma sheet to the dark coronal hole regions. Observations in the inner corona seem to indicate a transition of typically 10 to 20 degrees, whereas observations in interplanetary space, carried out from Ulysses, show on one hand an even faster transition of less than 2 degrees which is in agreement with earlier Helios results. On the other hand, these observations also show that the transition happens on different scales, some of which are significantly larger. The slow solar wind is connected to the streamer belt/plasma sheet, even though the discussions were still not conclusive on the point where exactly the slow solar wind originates. Considered the high variability of plasma characteristics in slow wind streams, it seems most likely that several types of coronal regions produce slow solar wind, such as streamer stalks, streamer legs and open field regions between active regions, and maybe even regions just inside of the coronal holes. Observational and theoretical studies presented during the discussions show evidence that each of these regions may indeed contribute to the solar slow wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号