首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   199篇
  国内免费   255篇
航空   903篇
航天技术   243篇
综合类   150篇
航天   198篇
  2024年   7篇
  2023年   10篇
  2022年   28篇
  2021年   38篇
  2020年   40篇
  2019年   49篇
  2018年   61篇
  2017年   80篇
  2016年   80篇
  2015年   60篇
  2014年   67篇
  2013年   62篇
  2012年   86篇
  2011年   69篇
  2010年   71篇
  2009年   57篇
  2008年   61篇
  2007年   58篇
  2006年   64篇
  2005年   58篇
  2004年   52篇
  2003年   43篇
  2002年   40篇
  2001年   34篇
  2000年   27篇
  1999年   32篇
  1998年   35篇
  1997年   17篇
  1996年   19篇
  1995年   20篇
  1994年   11篇
  1993年   11篇
  1992年   11篇
  1991年   13篇
  1990年   14篇
  1989年   6篇
  1988年   3篇
排序方式: 共有1494条查询结果,搜索用时 15 毫秒
91.
火焰衰减是运载火箭遥测系统设计及地面测站布站须重点考虑的问题.以火焰衰减对遥测地面站接收信号的影响为出发点,推导了火焰夹角与测站位置及火箭俯仰角之间的数学关系式,在此基础上依据已有的火焰夹角与火焰衰减关系模型,设计了理论弹道全程中地面测站火焰衰减量的计算程序.以某型遥测设备的接收信道链路为依据,在实际任务中对火焰衰减模型进行验证,结果证实模型具有一定的准确性,并在此基础上分析火焰衰减对遥测地面站某型变频器参数设置的影响,确定了实际任务中更加合理的变频器参数.  相似文献   
92.
利用超椭圆方法,设计了双喉道射流矢量喷管的气动外形,并采用S-A湍流模型数值研究了次主流压比、次流方向及喷管外形参数对其气动特性的影响。研究表明,当确定次主流压比SPR=3时,可依次确定该型喷管外形参数分别为空腔长度l=3h,空腔扩张角θ1=10°,空腔收敛角θ2=30°,二次流注入角α=120°时,矢量喷管的气动特性最优。将设计的气动最优喷管与飞翼布局无人机后体进行一体化设计,数值模拟了喷管对飞翼布局无人机升阻特性的影响,结果表明,双喉道射流矢量喷管能够很好地运用于飞翼布局无人机。  相似文献   
93.
主要开展4种不同结构热沉表面无沸腾区机载喷雾冷却实验关联式的研究.在总结前人工作经验并搭建实验台完成实验的基础上,提出了影响喷雾冷却性能的4个无量纲参数,且通过实验数据处理得到各个热沉表面的努塞尔数无量纲关联式.给出的光滑热沉表面实验关联式的预测值与实验值偏差在±8.5%以内,并分析了各个量纲对实验关联式精度的影响.对于钻孔表面,引入传热强化系数对关联式进行修正,使得关联式的预测值能够落在偏差±15%内.另外单独给出了槽道热沉表面的实验关联式,该关联式不受槽道结构及数量的影响,且适用于水、盐类及醇类溶液.   相似文献   
94.
李琳  高钱  吴亚光  范雨 《航空动力学报》2021,36(8):1657-1668
建立了缘板阻尼器(UPDs)各参数间的关联关系,揭示了减振性能随主要参数的变化规律,形成参数联动设计准则。基于双叶片-缘板阻尼器集中参数模型,采用多阶谐波平衡法(MHBM)计算稳态响应以衡量阻尼器性能;推导了解析雅可比矩阵,使收敛性和计算效率显著提高。结果表明:考虑参数的关联性是必要的;选取较大材料密度与特定底角的对称楔形缘板阻尼器,可以实现4.57%的最优阻尼比;当激振力存在相位差时,采用非对称的楔形阻尼结构能进一步提升阻尼效果。   相似文献   
95.
在民用飞机持续适航阶段,需要开展风险评估工作,以保证运营安全水平能够维持在可接受的范围之内。基于运输类飞机风险评估方法(TARAM)及风险准则,考虑不同的结构裂纹尺寸,给出基于机队故障数、临界裂纹、特征寿命的机队风险值计算方法;以机身增压边界结构受到循环增压载荷的疲劳裂纹为例,进行持续安全风险评估,计算该事件的风险水平,以及纠正措施实施时限;并通过使用纠正措施实施时限内个人风险进行验证。结果表明:个人风险低于风险阈值,本文制定的纠正措施及实施时限满足机队持续安全要求,可保证该机队的运行安全。  相似文献   
96.
本文第一部分综合了国外近几十年根据不同需求形成的多种水下导航技术,论述了面上导航信息利用水声技术向水下转化的多种形式以及利用不同地球物理参数与地理位置相关性导航的各自特点与问题,论述了在测绘海底地形、重力与其它地球物理特性及其变化时在传感器层面和任务层面融而为一所形成的独具水下特色的同步定位与建图(Simultaneous Localization and Mapping,SLAM)导航技术,论述了NavLab作为一个通用工具软件在水下导航系统研发、精度分析以及作业前导航功能规划和导航信息事后处理方面的独特作用。本文第二部分以极具代表性的挪威HUGIN AUV系列产品军民两用为实例,根据任务和导航功能需求,从其“导航工具箱”(ToolBox)选择适用手段,给出典型任务对应的导航方式和传感器。文章结束部分给出了基于先进人工智能技术的未来展望。  相似文献   
97.
一种复杂空间飞网系统参数优化设计方法   总被引:2,自引:0,他引:2  
王晓慧  万长煌  夏人伟 《航空学报》2016,37(10):3064-3073
由轻质软绳索编织而成的空间飞网是为非合作目标捕获而提出的空间系统概念,在空间碎片和废弃航天器处理方面具有很大的应用潜力。从平台抛射出后,飞网在空间形成不稳定的网形,且网形变化规律受初始参数设计的影响较大。针对空间飞网系统设计与试验中系统参数匹配问题,本文提出以容错值作为飞网展开性能的定量描述,从捕获任务的层面,建立面向捕获容错的空间飞网系统参数优化数学模型;以抓捕固定距离、确定大小的目标任务为算例,联合Isight优化平台与ANSYS/LS-Dyna求解,得到飞网系统最优参数匹配,算例仿真结果表明结果的适用性;最后,利用试验设计和极差分析方法验证最优点的稳定性。研究的模型与方法为开展空间飞网系统地面及空间试验等工程应用提供理论依据。  相似文献   
98.
在对散布参数验前可信度的定义与必要性进行分析的基础上,给出了给定散布参数(方差)的P值计算模型,构建了一维散布分析时验前分布可信度的P值模型,给出了验前P值与验前可信度的定义,并对其变动情况进行了阐述,给出了验前分布的拒绝条件.对二维散布分析条件下的验前可信度分析,分别构建了验前P值的独立求解模型和集成求解模型.并从0.05,0.2,0.4区分的数据区间,给出了验前分布选择的原则和要求.基于案例比较可见,验前可信度能较为显著地完成验前分布的差异化比较,相对现有的仅对验前可信度的定性说明,基于P值的验前可信度建模与计算,不仅能完成验前可信度的量化计算,而且能从概率的角度对验前分布选择的正确性进行假设检验.   相似文献   
99.
飞行仿真气动力数据机器学习建模方法   总被引:1,自引:0,他引:1  
基于机器学习思想,提出了一种大空域、宽速域的气动力建模方法。该方法利用飞行仿真弹道数据辨识的气动力数据,采用人工神经网络技术,实现了对高度、速度、姿态和舵偏角等多维度强非线性特性的全弹道气动力数据的高精度逼近。首先,分析了神经网络层数、隐含层神经元个数等对建模误差的影响,通过对典型弹道气动数据的神经网络建模计算,确定了较合适的神经网络层数和较优的隐层神经元个数。进而,利用飞行仿真的弹道数据辨识出沿弹道的气动力,采用神经网络建立了包含多个弹道融合的气动力模型,输出量分别为三轴气动力系数和力矩系数。最后通过气动模型输出量与原样本数据的对比,以及4条未参与训练弹道气动数据的预测,验证了该气动力建模方法具有较高的精度。建模结果表明:采用神经网络方法建立的飞行器气动力模型,对拟合多源耦合输入全弹道非线性气动力是可行的和有效的,在样本覆盖的高度、速度、姿态和控制舵偏角范围内,气动力拟合能力较强,并具有一定的外推性。该项研究可以为基于飞行试验数据的气动建模提供新的方法,并且能为飞行器气动力数据挖掘、飞行仿真和总体性能分析提供参考。  相似文献   
100.
为研究镁基碳纤维增强复合材料(C_f/Mg)的切削力与已加工表面质量,开展了硬质合金铣刀与硬质合金钻头超声辅助切削试验研究。通过正交试验得到,超声辅助铣削C_f/Mg复合材料时铣削力随每齿进给量及铣削深度的增加而明显增大,随主轴转速的增加而减小;试验中,在超声辅助铣削时每齿进给量0.025mm、铣削深度0.2mm、转速6000r/min加工参数下铣削力最小,每齿进给量0.025mm、铣削深度0.2mm、转速4000r/min加工参数下表面质量较好;采用硬质合金钻头进行单因素钻削试验时,轴向钻削力随主轴转速的升高而减小;与传统钻削相比,超声辅助钻削能减小轴向钻削力,在机床转速6000r/min、机床进给速度100mm/min加工参数下超声辅助钻削相比传统钻削可减小约36%的轴向钻削力;超声辅助钻削相比传统钻削能改善钻孔出口的毛刺、分层等缺陷。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号