首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   200篇
  国内免费   207篇
航空   687篇
航天技术   39篇
综合类   75篇
航天   135篇
  2024年   5篇
  2023年   15篇
  2022年   22篇
  2021年   26篇
  2020年   24篇
  2019年   30篇
  2018年   17篇
  2017年   55篇
  2016年   35篇
  2015年   27篇
  2014年   48篇
  2013年   28篇
  2012年   39篇
  2011年   37篇
  2010年   36篇
  2009年   47篇
  2008年   51篇
  2007年   63篇
  2006年   51篇
  2005年   34篇
  2004年   18篇
  2003年   26篇
  2002年   25篇
  2001年   29篇
  2000年   38篇
  1999年   25篇
  1998年   15篇
  1997年   18篇
  1996年   11篇
  1995年   9篇
  1994年   10篇
  1993年   5篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
排序方式: 共有936条查询结果,搜索用时 31 毫秒
101.
刘晶元  骆飞  李长春 《航空学报》1998,19(1):121-125
 在复合材料构件中埋入光纤传感器形成一种光纤复合材料机敏结构可以实现对构件的自检测和自诊断。研究埋入传感光纤后的碳/环氧树脂基复合材料的微观组织,分析光纤与树脂基体的融合状况以及对复合材料结构的影响。  相似文献   
102.
高性能与高功能纤维的发展   总被引:5,自引:0,他引:5  
概述了用于复合材料增强体的高性能纤维和具有各种物理与化学功能用途的高功能纤维的进展现状并推测其发展趋势。  相似文献   
103.
RESIDUAL STRENGTH AND FATIGUE LIFE OF 2 D AND 3 D CARBON FABRIC COMPOSITES   总被引:1,自引:0,他引:1  
Theapplicationofcarbonfibercomposites(CFRP)foraircraftstructuresisveryactivelybeingdevelopedtomeettherequirements:achievinghi...  相似文献   
104.
针对短时高温抗氧化的具体环境,采用先驱体转化工艺制备2D Cf/SiC-Si复合材料.首先考察首周期裂解温度对2D Cf/SiC-Si材料力学性能的影响,结果表明,首周期采用1200℃裂解,所制备的2D Cf/SiC-Si复合材料界面结合较好,弯曲强度和断裂韧性分别达到305.4MPa和15.7 MPa·m1/2.在此基础上研究了Si粉含量对材料性能的影响.结果表明,随着Si含量的增加,2D Cf/SiC-Si材料的力学性能稍有降低,而抗氧化性能明显提高,主要原因在于材料中游离碳含量的降低和Si氧化后生成的具有封填裂纹和隔氧作用的SiO2膜.  相似文献   
105.
为了研究多重纳米结构对块体材料强化和变形能力的影响机制,采用粉末冶金法制备了多重纳米结构的B4C颗粒增强铝基复合材料,并对复合材料的强化和形变破坏机制进行了定量和定性的讨论。由100%球磨复合粉末制备的块体复合材料的室温压缩强度为670MPa;当加入10vol%气雾化态的Al2024粉末后,复合材料的室温压缩强度升高到1.115GPa;之后随着气雾化态Al2024粉末含量的增加,复合材料的强度逐渐下降,但是没有产生明显的塑性变形;当气雾化态Al2024粉末的含量增加到50vol%时,复合材料的压缩强度下降到580MPa,断裂前变形率达到了10%。扫描电镜(SEM)和透射电镜(TEM)的分析结果显示,亚微米级的B4C颗粒、位错以及纳米晶基体分别通过Orowan强化、位错强化和细晶强化机制对复合材料进行强化;粗晶Al2024区域与复合结构区域的比例显著影响复合材料的形变及破坏机制。  相似文献   
106.
In the present work, the coefficients of thermal expansion(CTEs) of unidirectional(UD)fiber-reinforced composites are studied. First, an attempt is made to propose a model to predict both longitudinal and transverse CTEs of UD composites by means of thermo-elastic mechanics analysis. The proposed model is supposed to be a concentric cylinder with a transversely isotropic fiber embedded in an isotropic matrix, and it is subjected to a uniform temperature change. Then a concise and explicit formula is offered for each CTE. Finally, some finite element(FE) models are created by a finite element program MSC. Patran according to different material systems and fiber volume fractions. In addition, the available experimental data and results of other analytical solutions of CTEs are presented. Comparisons are made among the results of the cylinder model,the finite element method(FEM), experiments, and other solutions, which show that the predicted CTEs by the new model are in good agreement with the experimental data. In particular, transverse CTEs generally offer better agreements than those predicted by most of other solutions.  相似文献   
107.
复合材料的机械加工是一个特殊的问题.本文论述了用高压水切割技术对复合材料加工的原理和优点,简要说明了切割设备的组成,给出了主要的理论计算方法,并用实验数据进行了比较.最后指出了该技术的应用领域的扩展及其前景.  相似文献   
108.
单向复合材料在低温下的应力集中及强度   总被引:1,自引:0,他引:1  
首先采用计及基体拉力的修正剪滞模型,研究了在低温情形下受纵向拉伸荷载作用的单向纤维增强复合材料由部分纤维及基体断裂所导致的应力重新分布。然后采用随机临界核理论,对单向纤维增强复合材料在低温情形下的拉伸破坏过程进行了细观统计分析,定量地研究了低温对拉伸强度的影响。计算结果表明,在低温环境下,E-玻璃纤维和碳纤维复合材料的应力集中因子有不同程度的改变,其强度极限均比常温情形下高。  相似文献   
109.
基体碳结构对轴间密封环用C/C复合材料摩擦磨损特性的影响   总被引:16,自引:0,他引:16  
葛毅成  易茂中 《航空学报》2004,25(6):619-624
 在m2000型摩擦实验机上,在不同载荷作用下,对4种具有不同偏光结构的C/C复合材料与40Cr钢配副进行环—块滑动摩擦实验。结果表明:相同载荷下,具有粗糙层(RL)基体碳结构试样的摩擦系数都最高,且随载荷的增加在0.151~0.165之间波动。而光滑层(SL)碳结构的试样的摩擦系数最低,随载荷增加在0.105~0.117之间缓慢降低。随时间延长,RL结构的试样在高载荷下摩擦系数下降,SL结构的试样摩擦系数除60N外略有上升,树脂碳增密的试样摩擦系数均下降,而树脂碳+SL碳的试样仅80N、150N的基本保持不变。RL结构的试样体积磨损量最大,最大值为150N时的1 61mm3,而SL+树脂碳结构的试样体积磨损量最小,在0.391~0.420mm3之间。SEM观察表明:随载荷增加,RL结构的试样摩擦表面形貌仍很完整、光滑,而浸渍增密的试样纤维拔出现象加剧,SL+树脂碳结构的试样摩擦表面逐渐完整。  相似文献   
110.
对高速钻削碳/环氧复合材料的刀具磨损特性、刀具磨损对钻削力的影响等进行了研究。结果表明:钻削彬环氧复合材料时,刀具磨损的原因主要是磨粒磨损(或质点磨损),随着刀具磨损的加剧,轴向力持续增加,扭矩的增加逐渐趋于平缓,因此控制刀具磨损是减小轴向力最有效的手段之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号