全文获取类型
收费全文 | 600篇 |
免费 | 137篇 |
国内免费 | 69篇 |
专业分类
航空 | 472篇 |
航天技术 | 106篇 |
综合类 | 43篇 |
航天 | 185篇 |
出版年
2023年 | 12篇 |
2022年 | 28篇 |
2021年 | 21篇 |
2020年 | 32篇 |
2019年 | 31篇 |
2018年 | 32篇 |
2017年 | 37篇 |
2016年 | 47篇 |
2015年 | 28篇 |
2014年 | 35篇 |
2013年 | 39篇 |
2012年 | 39篇 |
2011年 | 45篇 |
2010年 | 50篇 |
2009年 | 50篇 |
2008年 | 42篇 |
2007年 | 40篇 |
2006年 | 23篇 |
2005年 | 25篇 |
2004年 | 19篇 |
2003年 | 15篇 |
2002年 | 27篇 |
2001年 | 14篇 |
2000年 | 17篇 |
1999年 | 4篇 |
1998年 | 10篇 |
1997年 | 6篇 |
1996年 | 8篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 2篇 |
排序方式: 共有806条查询结果,搜索用时 0 毫秒
791.
792.
793.
为了分析推力室内壁失效机理及准确预估推力室内壁寿命,对推力室进行流-热-固耦合计算.流-热耦合为热-固耦合提供准确的热和机械载荷,热-固耦合模型对推力室内壁在循环加载下的变形进行非线性平面应变有限元分析.通过计算,得到了推力室内壁在单循环各阶段的应力-应变分布和循环加载下的变形过程,并进行了寿命预估.结果表明:采用的流-固耦合策略能准确地实现流-热耦合模块向热-固耦合模块的载荷传递,能为结构分析提供准确的边界条件.在预冷、后冷和松弛阶段,内壁承受拉应力;在工作阶段,内壁承受压应力.随着循环次数的增加,内壁残余应力和应变不断增大,内壁向燃烧室内鼓起和不断变薄,冷却通道中心最先失效.所采用的分析模型能够模拟内壁在循环热和机械载荷下的变形过程,用于预估推力室内壁的循环寿命. 相似文献
794.
提出了一种基于脉宽式(PW)直接弹道侧向力的反导拦截弹控制方法,进而对其实现原理及控制策略进行了设计和讨论,并验证、分析了该控制方法的有效性。 相似文献
795.
推重比12~15发动机技术途径分析 总被引:8,自引:2,他引:8
依据发动机数据库统计结果和大量计算研究,本文探讨了提高发动机推重比的技术途径。在当代高性能发动机参数的基础上,依靠气动热力学的进步和配以相应材料、工艺技术,发动机推重比可达到约12;进一步依靠发动机部件设计技术的提高,减少叶片机级数、采用整体叶盘结构、高通流设计,可使发动机推重比达到13~14左右;要想使推重比达到15. 相似文献
796.
针对固体微推力器阵列(SPMA)中微推力器一次性点火,推力测试中难以获得精确推力的特点,为实现推力在线估计和实时补偿,提出一种利用二次规划对微推力器阵列推力进行估计,同时结合混合整数规划算法进行推力分配的方法,对估计算法收敛性以及控制系统稳定性进行了分析。该方法在不修改控制律的前提下,对推力器推力进行在线估计,并采用推力分配的方法实时补偿推力器出现的推力偏差,对系统稳定性的分析证明该方法可以保证系统的有界稳定。将其应用到微纳卫星编队保持中,仿真结果表明,在微推力器阵列出现推力偏差的情况下,该方法能很好地补偿推力偏差对控制系统造成的影响。 相似文献
797.
为了能够方便快捷地对塞式喷管发动机的性能做出准确的预示,通过理论分析,结合塞式喷管的流场特征,提出了一种塞式喷管壁面压强分布的数学模型。在此基础上,分别建立了全长型和截短型的塞式喷管的推力模型。通过与实验的对比分析,模型与实验数据基本吻合,验证了塞式壁面压力分布的数学模型以及在此基础上建立的推力模型,可以作为塞式喷管发动机性能预示的有效工具。 相似文献
798.
为了确定在实际飞行条件下,当发动机状态变化时,进排气系统损失对飞机气动特性的影响,针对翼吊短舱形式的发动机开展了缩比模型风洞试验,分别进行了巡航构型与起飞构型,马赫数0.1,0.15,0.2,攻角0°~15°,发动机外涵喷管落压比1.22,1.32,1.44,1.53,1.61等条件下的风洞试验。通过数据分析,明确了该类型发动机推/阻划分的基本方法,分析了发动机状态变化时飞机气动特性的改变及修正方法。风洞试验结果表明:发动机状态变化对飞机升阻特性影响明显,必须建立合理的推/阻划分体系,对实际使用条件下,发动机状态变化引起的进排气损失进行修正,通过本文建立的推/阻划分体系,计算得到的发动机安装净推力与风洞试验结果最大偏差为1.6%。 相似文献
799.
800.