首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   109篇
  国内免费   163篇
航空   603篇
航天技术   101篇
综合类   106篇
航天   64篇
  2024年   4篇
  2023年   13篇
  2022年   25篇
  2021年   37篇
  2020年   29篇
  2019年   42篇
  2018年   32篇
  2017年   35篇
  2016年   53篇
  2015年   54篇
  2014年   35篇
  2013年   33篇
  2012年   38篇
  2011年   45篇
  2010年   34篇
  2009年   43篇
  2008年   32篇
  2007年   36篇
  2006年   23篇
  2005年   20篇
  2004年   16篇
  2003年   19篇
  2002年   18篇
  2001年   16篇
  2000年   19篇
  1999年   13篇
  1998年   24篇
  1997年   10篇
  1996年   7篇
  1995年   10篇
  1994年   13篇
  1993年   10篇
  1992年   9篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
排序方式: 共有874条查询结果,搜索用时 15 毫秒
821.
基于双eN方法的短舱层流转捩影响因素   总被引:1,自引:0,他引:1  
孟晓轩  白俊强  张美红  王美黎  何小龙  汪辉 《航空学报》2019,40(11):123040-123040
发展自然层流短舱对提升现代民机的经济性和环保性具有重要意义,而对影响短舱层流转捩的因素进行研究有助于更好地开展短舱的层流设计。本文基于线性稳定性分析方法,将双eN方法同RANS方程求解器耦合,建立了一套可同时计算T-S(Tollmien-Schlichting)波和横流(CF)驻波诱导转捩的流动转捩预测方法,通过标准椭球算例验证了该方法的正确性,进而研究了来流马赫数、雷诺数、湍流度以及迎角对短舱转捩的影响。结果表明:马赫数和迎角会带来压力梯度的明显改变从而引起转捩位置发生变化;而在此构型的高雷诺数工况下,雷诺数和湍流度对转捩位置影响相对较小,转捩位置移动的区域不超过短舱长度的5%。因此在设计阶段,在高雷诺数条件下保持层流设计要尽量避免较大的逆压梯度,保持顺压梯度。  相似文献   
822.
本文叙述了高速可压缩边办流动稳定性和转捩点预报的数值计算方法,特别是Rayleigh反迭代法与边界层渐近匹配方法的配合,有效地提高了计算精度,节省了存储和计算时间,本文给出的评定界层第一模式的稳定性分析和转捩区数值预报结果,与已有的实验结果一致。  相似文献   
823.
人工智能在卫星任务规划中的应用   总被引:2,自引:0,他引:2  
智能规划与调度是实现卫星自主规划其飞行任务的关键。将人工智能方法应用于卫星的任务规划,以执行对地观测任务为例,将任务规划问题归于组合优化问题,建立了相应的数学模型,并应用Hopfield神经网络算法进行求解,结果表明,该方法可用于单个仪器的任务规划。  相似文献   
824.
高超声速边界层转捩高速纹影显示   总被引:1,自引:0,他引:1       下载免费PDF全文
陈苏宇  常雨  江涛  李强  张扣立 《宇航学报》2019,40(9):1006-1013
为建立适用于激波风洞边界层转捩测量的高速纹影显示技术,在Ma10条件下,采用高速纹影显示技术,研究了半锥角7°钝锥边界层中第二模态不稳定波的演变特性。试验在中国空气动力研究与发展中心超高速空气动力研究所(HAI)的FD-14激波风洞上进行。试验来流单位雷诺数为4.9×10 6 m -1 、1.6×10 7m -1 ,模型攻角0°,头部钝度有0.2 mm、0.5 mm和2 mm三种。通过对纹影图像灰度进行功率谱密度(PSD)分析得到了第二模态不稳定波的波长,对不稳定波纹影图像进行互相关分析计算了不稳定波的传播速度。基于纹影显示结果计算的第二模态波主频与PCB压力传感器测量结果符合较好,证明了纹影测量的可靠性。  相似文献   
825.
材料的断裂韧性对于损伤容限设计和评估技术非常重要,但采用传统的试验方法获得过渡状态下材料的断裂韧性需要大量的时间和费用.针对这些不足,提出了一种过渡状态下材料断裂韧性的计算方法.分析了三维裂纹尖端的三轴应力约束参数,利用材料断裂能量准则研究了断裂韧性与拉伸性能之间的关系,得到了在三向应力状态下Ⅰ型裂纹体断裂破坏时的断裂韧性与材料单向拉伸性能参数之间的关系表达式和过渡状态下材料断裂韧性的计算方法.计算了2219-T87铝合金在过渡状态下的断裂韧性理论值,并将其与试验结果和经验公式计算值进行比较.结果显示,理论计算值处于试验点范围内,小于经验公式计算值,且偏于安全.   相似文献   
826.
针对国家数值风洞(NNW)工程高超声速三维边界层转捩预测需求,开展了高超声速边界层横流转捩判据及模型研究。采用线性稳定性分析eN方法对高超声速转捩数据进行扩展,结合横流强度与表面粗糙度构造当地化的高超声速横流转捩判据,对基于Chant 2.0计算平台的高超声速修正γ-Reθ转捩模型进行了横流模式拓展,建立了适用于高超声速三维边界层横流转捩预测的C-γ-Reθ转捩模型。采用构建的转捩模型对多状态下的高超声速尖锥进行横流转捩预测,取得了与试验结果符合较好的预测效果。  相似文献   
827.
李昂  聂党民  温祥西  韩宝华  曾裕景 《航空学报》2021,42(9):324726-324726
动态、准确的管制系统运行态势预测是航空运输系统各相关单位开展协同决策的关键基础。基于航空器间的冲突情况、管制员对航空器的管控情况以及管制移交情况构建管制-飞行状态相依网络,探究、分析其演化规律,采用相关性分析和主成分分析证明了所选5项指标的合理性。设置自由飞行和固定航线飞行两种仿真场景,通过计算平均节点度、平均点强等拓扑指标的最大李雅普诺夫指数证明各时间序列均具有混沌特性,选择长短期记忆(LSTM)人工神经网络方法对各时间序列的演化规律进行预测,并与其他预测算法进行对比。仿真结果表明LSTM算法能对管制系统的演化过程进行有效的预测,且预测精度高于贝叶斯算法和支持向量机算法;在自由飞行条件下,5项指标的预测误差绝大部分在20%以内,固定航线飞行的预测效果优于自由飞行。  相似文献   
828.
低雷诺数分布式螺旋桨滑流气动影响   总被引:8,自引:2,他引:6  
王科雷  祝小平  周洲  王红波 《航空学报》2016,37(9):2669-2678
以高空长航时(HALE)太阳能无人机(UAVs)研究为背景,采用基于混合网格技术及k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程的多重参考系(MRF)方法,对3种螺旋桨-机翼构型的低雷诺数气动特性进行了高精度准定常数值模拟,在等拉力前提条件下,通过对比机翼气动力系数及表面流场结构特征分析了分布式螺旋桨(DEP)滑流对FX63-137机翼的气动影响。研究表明:螺旋桨滑流影响使得桨后总压及流速显著增大,这是机翼升力增大的主要原因,但同时机翼阻力特性急剧恶化,升阻比反而降低;螺旋桨滑流向机翼边界层内注入丰富湍动能从而抑制流动分离,扩大机翼表面湍流范围及附着流动区域;分布式螺旋桨滑流与低雷诺数机翼表面复杂流动相互作用显著,主要表现为滑流区域边界展向涡结构的产生。  相似文献   
829.
为研究表面粗糙度对涡轮叶片流动转捩以及传热特性的影响,在自行开发的CFD程序平台上提出了对γ-Reθ转捩模型的粗糙度修正方法,并参考平板绕流和涡轮叶栅的实验数据对该方法进行验证。考虑粗糙度效应的影响,对Mark Ⅱ涡轮导叶5411工况进行数值模拟,得到如下结论:表面粗糙度对层流边界层换热系数影响不大,而对湍流边界层则有较大影响,进而显著改变壁面温度分布;与光滑壁面相比,5μm的等效沙粒粗糙度使吸力面湍流区域壁面温度升高约5.7K,100μm粗糙度使壁面温度升高28.4 K,增幅达5%左右;当壁面粗糙度较低时,激波干涉对吸力面边界层的转捩起主导作用,而当粗糙度大于某临界值时,其作用会使转捩位置突然变化,本算例中该临界值近似为150μm。   相似文献   
830.
研究变元和文字出现次数受限制的规则3-SAT问题,提出了一种严格随机正则(3,s)-SAT问题,并给出了该问题的实例产生模型--SRR模型。结合一阶矩方法和生成函数展开项系数的渐近近似技术,证明了严格随机正则(3,s)-SAT问题相变点的上界,即当变元规模N较大且变元出现次数s>11时,严格随机正则(3,s)-SAT实例是高概率不可满足的。实验结果表明:由SRR模型所生成的随机实例中,当N>60且s>11时,所有的(3,s)-SAT实例均是不可满足的,而当N>150且s<11时,所有的(3,s)-SAT实例均是可满足的,即严格随机正则(3,s)-SAT实例的相变点位于s=11处,且在s=11处(子句变元比为11/3)的严格随机正则(3,s)-SAT实例,比在相变点(子句变元比)4.267处同规模的均匀随机3-SAT实例更难求解,因此,SRR模型可以很方便地在s=11处构造难解的随机3-SAT实例。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号