首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   20篇
  国内免费   19篇
航空   131篇
航天技术   130篇
综合类   31篇
航天   24篇
  2023年   5篇
  2022年   5篇
  2021年   4篇
  2020年   13篇
  2019年   9篇
  2018年   7篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   11篇
  2013年   10篇
  2012年   13篇
  2011年   15篇
  2010年   18篇
  2009年   26篇
  2008年   23篇
  2007年   12篇
  2006年   12篇
  2005年   7篇
  2004年   5篇
  2003年   11篇
  2002年   7篇
  2001年   8篇
  2000年   12篇
  1999年   12篇
  1998年   8篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   11篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有316条查询结果,搜索用时 187 毫秒
311.
Noontime bite-outs in ionospheric F2-region electron density in the geomagnetic equatorial, low, and middle latitudes have been reproduced in this study using the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM). The different driving mechanisms of F2-region noontime bite-outs at different latitudes were further verified by modeling simulation. In the geomagnetic equator, the upward ExB plasma drifts are the main process to produce the noontime bite-outs in ionospheric electron density. In the geomagnetic low latitudes, both the electrical fields and poleward meridional winds play a crucial role in forming the noontime bite-outs. In contrast to the case at the geomagnetic equator, a weaker fountain effect might be an favorable condition for the noontime bite-outs to occur at low latitudes. For geomagnetic middle latitudes, an upward plasma flux and poleward meridional winds are the dominated drivers in producing the noontime bite-outs. Modeling results show that a large upward plasma flux and poleward meridional winds make the noontime bite-outs to occur and observable over middle latitudes.  相似文献   
312.
313.
《中国航空学报》2023,36(7):147-159
For high performance manufacturing of micro parts and features, a hybrid chemical modification strategy is proposed to decrease critical energy barrier of mechanical removal of hard and brittle crystal material by refining localized machining condition. The strategy, namely UV-light and IR-laser hybrid chemical modification (UVIR-CM) strategy, includes two steps, an ultraviolet light (UV-light) catalytic advanced oxidation and an infrared laser (IR-laser) assisted selective modification based on Fenton liquid–solid reaction for monocrystalline silicon. The modification effects of UVIR-CM strategy were investigated by surface morphology micro-observation, cross-section transmission electron microscopy (TEM) observation, Raman spectroscopy analysis and nanoindentation test. Experimental results demonstrated that varied degrees of laser texturing appeared on different strategy samples’ IR-laser scanned area. And the IR-laser thermal damage has been successfully inhibited due to the refraction and reflection of energy by bubbles in liquid medium. But for the UVIR-CM strategy, a uniform and amorphous silicate layer is detected in a certain boundary. The UV-light promotes oxidation cycle ability of the chemical solution and ensures sufficient oxide modified layer for subsequent step. Attributing to synergism of photochemical, photothermal and kinetic effects induced by IR-laser, the modified layer displays layered structure with about 600 nm thickness, (2.7 ± 0.60) GPa nanohardness, and (93.7 ± 22.9) GPa indentation modulus. And the layered structure is amorphous layer, nanocrystal and micro-twins layer from the surface to the interior of sample. Consequently, it reveals that the subsequent mechanical removal will become easy due to decreasing energy barrier of monocrystalline silicon in selective area. Meanwhile, its original excellent mechanical properties also are maintained under a certain depth. The results contribute to develop a novel combined micro-machining technology to achieve collaborative manufacturing of structure shape and surface integrity for micro parts and feature.  相似文献   
314.
《中国航空学报》2022,35(8):221-235
Aimed at the problem of instability in engine control caused by vector deflection in experiment of turbofan engines with Axisymmetric Vectoring Exhaust Nozzle (AVEN), a vector deflection stability control method of aero-engine based on Linear Active Disturbance Rejection Control (LADRC) is proposed. Firstly, based on CFD numerical simulation, aerodynamic performance model of AVEN is established, and the aerodynamic load change rule of the nozzle throat area actuator during vector deflection is revealed. Subsequently, the integrated model of AVEN/turbofan engine is established by Simulink/AMESim co-simulation. Finally, the nozzle throat area control loop based on LADRC is designed. The simulation results show that the integrated model can reflect the influence of vector deflection on the stability of the control system. The accuracy comparison between the fan rotor speed and the test data during vector deflection is larger than 1%, indicating a high degree of confidence. Compared with the conventional PID control, the designed LADRC control loop reduces the speed of the low-pressure rotor during vector deflection by 70%, which effectively improves the control stability of the vector deflection. Meanwhile, the fuel flow ratechange during the vector deflection process is smaller and more economical, which provides an important reference for engineering applications.  相似文献   
315.
星载控制软件在轨动态重构技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
李亚辉  陆钒 《遥测遥控》2023,44(3):24-30
为使星载控制软件可在轨动态重构,提出一种基于量子编程框架、无须操作系统支持、可实现多版本切换的星载控制软件在轨动态重构方法。在分析影响在轨动态重构关键技术基础上,从量子框架的面向对象运行机制出发来寻求软件框架对动态重构的支持;通过划分函数边界,将函数归类为内部函数和公共函数,避免了模块间的循环依赖;给出了函数向量表维护策略,并以版本号为导向实现了向量表切换。该方法在BM3803星载处理器平台进行了充分测试,结果表明:所提出的在轨重构方法系统无须停机、版本可回退且更新过程可靠。本方法占用内存小、平台依赖性弱、代码可复用性强,可推广应用至硬件资源有限的星载控制器终端。  相似文献   
316.
《中国航空学报》2023,36(1):311-323
The carrier-based aircraft landing and arrest process is complex and nonlinear, and includes the coupling effect between the aircraft and arresting system. It has many uncertain factors, which lead to difficulty in the reliability analysis. To make the reliability analysis more accurate and effective, this paper presents some studies. Taking a certain type of carrier-based aircraft as the research object, a dynamic model of the landing and arrest cable was established, and the accuracy of the model was verified using laboratory test results. Based on the model, this paper shows how the key parameters, including the sinking velocity, pitch angle and horizontal velocity, affect the collision rebound performance of the arresting hook. After that, a limit state equation of the arresting hook system’s reliability was established. For the implicit limit state equation, a surrogate model of the reliability of the arresting hook was established using the Support Vector Machine (SVM) method, and then reliability analysis was carried out using the Monte Carlo method. Finally, it was explained in detail how the key parameters affect the reliability of the hook engaging the arresting cable, and some meaningful conclusions were obtained. This analysis method and its results can provide a reference for the top-level parameter design of carrier-based aircraft and reliability research on the arresting systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号