首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720篇
  免费   718篇
  国内免费   333篇
航空   2054篇
航天技术   250篇
综合类   165篇
航天   302篇
  2024年   8篇
  2023年   50篇
  2022年   113篇
  2021年   142篇
  2020年   125篇
  2019年   122篇
  2018年   100篇
  2017年   119篇
  2016年   153篇
  2015年   125篇
  2014年   148篇
  2013年   140篇
  2012年   140篇
  2011年   176篇
  2010年   144篇
  2009年   104篇
  2008年   119篇
  2007年   129篇
  2006年   83篇
  2005年   92篇
  2004年   75篇
  2003年   50篇
  2002年   42篇
  2001年   30篇
  2000年   45篇
  1999年   39篇
  1998年   28篇
  1997年   25篇
  1996年   24篇
  1995年   16篇
  1994年   12篇
  1993年   15篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
排序方式: 共有2771条查询结果,搜索用时 15 毫秒
871.
第二代490N轨控发动机研制及在轨飞行验证   总被引:1,自引:1,他引:1       下载免费PDF全文
490N液体火箭发动机被广泛使用于航天器远地点机动入轨或者为其他轨道机动提供推力。我国第一代490N发动机真空比冲为304.7s,曾经成为制约我国航天器寿命上台阶的技术瓶颈,因此开展了基于铌合金材料的高性能第二代490N发动机研制工作,比冲提高10s。对第二代490N轨控发动机的研制和在轨飞行验证结果进行了总结和分析。第二代490N发动机研制过程中突破了高性能喷注器、耐高温材料及涂层、发动机头部喷注器法兰和燃烧室壁面结构温度控制、抗高量级力学环境能力以及热防护罩等多项关键技术,真空比冲达到了317.8s,单台发动机累计199次启动工作寿命40000s以上,工作性能达到国际同等水平。  相似文献   
872.
为了提高涡轮叶片对流冷却模型预测精度,提出了一种在叶片固壁内同时考虑叶片径向和垂直于壁面方向(法向)导热的二维对流冷却模型。该模型在弦长方向划分多个元素,忽略元素内弦长方向叶片温度变化,在元素内的径向和法向建立二维导热方程作为叶片固壁温度场的控制方程,其边界条件包括叶表燃气绝热温度、燃气侧对流换热系数和叶片叶根、叶顶热流密度等。给出了该模型二维导热方程和边界条件的差分求解方法。以E~3涡轮高压导叶为例,将模型与CFD计算的叶片外壁面温度分布进行了对比。结果表明,该模型在给定冷气量下预测的叶片温度分布变化趋势与CFD相近,最大温度误差不超过6.5%,计算时间与CFD相比缩短了95%,能够快速、准确预测涡轮对流冷却叶片的冷气需求量。  相似文献   
873.
针对波转子作为燃气轮机高压级构成的波转子发动机,考虑波转子普遍存在的烟气回流、空气排放现象及其形成的空气/烟气工质组合,建立热力学控制方程组,对波转子发动机总体方案进行对比和参数分析,并且基于热力循环模型分析参数影响关系的热力学原理。分析结果表明:烟气回流和空气排放的流量比例的增加会在不同程度上降低波转子发动机的循环功与热效率;烟气回流对总体性能的影响程度小于空气排放;适当提高波转子压比可以在考虑烟气回流和空气排放影响的前提下保持波转子发动机的总体性能。  相似文献   
874.
针对复合材料泡沫夹芯结构在维修结构性能研究方面的缺失,在完成了复合材料泡沫夹芯板的维修与压缩性能测试之后,建立了结构有限元分析模型,结合夹芯结构的稳定性理论解析模型,并对复合材料泡沫夹芯结构的胶接修理压缩性能进行验证。结果表明:通过试验结果简化了有限元分析模型中的胶层设置;应用复合材料夹芯结构的稳定性理论解析模型,能够快速获得复合材料夹芯维修结构的侧压极限载荷上限值;复合材料泡沫夹芯修理结构的主要侧压破坏模式为面板一阶与二阶屈曲失效,该结果说明复合材料泡沫夹芯修补结构的有限元模型与解析稳定性理论模型的计算精度较高,具有较强的工程实用性。  相似文献   
875.
雷达电源系统的运行状态直接影响整个雷达设备的安全性与性能指标的实现,如何实现雷达电源的 健康状态评估是亟待解决的问题。首先采用雷达电源正常状态下的健康特征数据训练自组织神经网络;然后 计算监测数据与训练后的自组织神经网络中权重向量的距离,将距离值归一化表示为健康度;最后利用试验数 据计算健康度,并实现健康分级。结果表明:该模型计算的健康度随电源老化时间变化整体呈现下降的特点, 该模型可以实现雷达电源健康状态评估。  相似文献   
876.
马驰  高丽敏  李瑞宇  李杰 《推进技术》2020,41(9):1958-1966
为分析跨声速转子实时波动的叶顶间隙尺寸对气动性能的影响,对跨声速压气机转子真实运行状态下一个稳定工况实时波动的叶顶间隙数据进行统计分析,获得了叶顶间隙尺寸的总体水平、波动幅值和概率分布形式。以跨声速压气机转子NASA Rotor 37为研究对象,采用非嵌入式混沌多项式不确定性量化方法,对100%转速下近失速和峰值效率两个工况施加相同叶顶间隙波动对跨声速转子气动性能的影响进行了不确定性量化分析。结果表明,真实运行状态下叶顶间隙波动对气动性能的总体水平无影响,但会缩小喘振裕度3.75%;近失速工况对叶顶间隙波动更为敏感,各参数的相对波动幅值均较峰值效率工况有所增大,等熵效率受叶顶间隙波动的影响比质量流量和总压比大;近失速工况下叶顶间隙波动在叶高方向上的影响范围和强度均大于峰值效率工况,98%叶高位置处静压系数和总压损失系数最大相对波动幅值分别可达14.84%和5%。峰值效率工况下流场中的不确定性主要由叶顶泄漏流及其与激波相互作用引起;而近失速工况下流场当中的不确定性则是由激波和吸力面分离流动起主要作用。  相似文献   
877.
涡轮转子凹槽叶尖泄漏流动气动热力特征   总被引:1,自引:2,他引:1       下载免费PDF全文
为探索总结凹槽叶尖泄漏流动气动热力特征,利用实验和数值模拟方法,对叶尖凹槽内部旋涡相互作用机理和叶顶流动换热与泄漏流能量再分布等问题进行研究,并对凹槽叶尖参数化设计方法进行探讨。结果表明:搭建的考虑多因素实验台和可视化泄漏流动测量方案可以精确地捕捉到叶顶区域的流动结构;刮削涡在凹槽中起到"气动篦齿"作用,其形态特征的变化直接影响凹槽叶尖对泄漏流动的控制效果;高温泄漏流流体对叶片表面的冲击是叶尖热负荷提高的主要原因;合理选择叶尖气动参数和凹槽的几何参数可以有效控制刮削涡形态,最终提升叶尖气动热力性能。  相似文献   
878.
唐国庆  薛伟鹏  曾军  赵云 《推进技术》2020,41(9):2011-2020
为减小整个预旋系统的流动损失,首先对带预旋集气腔进气孔、预旋集气腔、预旋喷嘴的冷气预旋流路进行了分析,发现进气孔和集气腔会导致预旋喷嘴进口流场不均匀,相较于进口均匀条件,预旋喷嘴总压损失系数增大0.026。在此基础上提出了一种将预旋集气腔进气孔、预旋集气腔和预旋喷嘴融合设计的低损失融合式预旋喷嘴设计方案,分析表明:融合式预旋喷嘴能有效减小冷气在预旋系统内的流动损失,在设计工况总压损失系数减小0.032,并使冷气在预旋系统内流动更加均匀,提升了预旋系统的整体性能。  相似文献   
879.
何辉  毛军逵  刘方圆  杨悦  范俊  刘兆颖  徐启明 《推进技术》2020,41(10):2283-2291
针对有主动间隙控制的某型高压涡轮,建立了考虑发动机退化的叶尖间隙预估模型,重点研究了发动机在长期使用、性能退化过程中涡轮前燃气温度和蠕变变形对叶尖间隙的影响。研究中,首先分析了间隙预测中发动机性能退化影响的引入方式,建立了对应的间隙预估流程。随后以某型发动机典型工作历程为对象,对比研究了传统间隙控制方案、考虑发动机性能退化影响两种条件下的涡轮叶尖间隙尺度变化规律,并据此开展了间隙控制策略的优化调整。研究中发现,由于发动机性能的退化,导致涡轮前燃气温度升高,使得机匣、轮盘和叶片的热变形量增大,其中在最大巡航阶段对机匣的影响最大,其伸长量达到了6.914mm,与未退化前相比增大了17%,同时由于发动机的长期使用,叶片和轮盘受蠕变变形影响,导致叶尖间隙的变化。研究结果表明,采用优化后的主动间隙控制方案,各个工况下的叶尖间隙值均控制在合理范围内,尤其在高温起飞阶段,与退化状态下的间隙值相比提高了53%,有效避免了叶片严重碰摩等故障发生。  相似文献   
880.
针对无人机用大气数据计算机,为使其满足适航审定要求,提出基于模型的实现方法。首先介绍了大气数据计算机获取适航的方式,并以获取技术标准规定项目批准书(CTSOA)为驱动,按照大气数据计算机CTSO标准提出满足最低性能标准的系统需求,将系统需求进行分解选择合适的传感器及硬件平台。随后对系统功能进行详细设计,并按照DO-178B规范完成大气数据计算机的模型搭建和仿真验证。验证结果表明,基于模型的大气数据计算机满足系统所提各项指标,开发流程符合DO-178B标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号