首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   98篇
  国内免费   28篇
航空   172篇
航天技术   165篇
综合类   25篇
航天   70篇
  2023年   11篇
  2022年   13篇
  2021年   18篇
  2020年   29篇
  2019年   19篇
  2018年   11篇
  2017年   12篇
  2016年   8篇
  2015年   5篇
  2014年   17篇
  2013年   37篇
  2012年   34篇
  2011年   34篇
  2010年   13篇
  2009年   29篇
  2008年   23篇
  2007年   18篇
  2006年   14篇
  2005年   11篇
  2004年   12篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
排序方式: 共有432条查询结果,搜索用时 46 毫秒
421.
Total electron data (TEC) from GPS nowadays can be used as a tool for understanding the space weather phenomena. The development of prediction model for TEC is quiet crucial and challenging due to the dynamic behavior of the ionosphere, since it depends on different factors such as seasonal, diurnal and spatial variations, solar geomagnetic conditions etc. In this paper, an attempt is made for predicting the GPS derived TEC values for different GNSS stations over India using a hybrid method based on Ensemble empirical mode decomposition (EEMD) and Long Short-Term Memory (LSTM) deep learning method. The daily TEC time series data from the IISc Bangalore (Latitude 13.021, Longitude 77.570), Lucknow (Latitude 26.912, Longitude 80.956) and Hyderabad (Latitude 17.417, Longitude 78.551) stations over India during the period 2008 to 2015 of solar cycle 23 and 24 is used for analysis. The assessment of model performance for testing predicted output compared with LSTM and EMD-LSTM models, and their comparison results show that the hybrid EEMD-LSTM model presents better than the other models.  相似文献   
422.
《中国航空学报》2022,35(11):401-415
The aeroengine casing ring forgings have complex cross-section shapes, when the conventional ultrasonic or phased array is applied to detect such curved surfaces, the inspection images always have low resolution and even artifacts due to the distortion of the wave beam. In this article, taking a type of aeroengine casing ring forging as an example, the Total Focusing Method (TFM) algorithms for curved surfaces are investigated. First, the Acoustic Field Threshold Segmentation (AFTS) algorithm is proposed to reduce background noise and data calculation. Furthermore, the Vector Coherence Factor (VCF) is adopted to improve the lateral resolution of the TFM imaging. Finally, a series of 0.8 mm diameter Side-Drilled Holes (SDHs) are machined below convex and concave surfaces of the specimen. The quantitative comparison of the detection images using the conventional TFM, AFTS-TFM, VCF-TFM, and AFTS-VCF-TFM is implemented in terms of data volume, imaging Signal-to-Noise Ratio (SNR), and defect echo width. The results show that compared with conventional TFM, the data volume of AFTS-VCF-TFM algorithm for convex and concave is decreased by 32.39% and 73.40%, respectively. Moreover, the average SNR of the AFTS-VCF-TFM is gained up to 40.0 dB, while the average 6 dB-drop echo width of defects is reduced to 0.74 mm.  相似文献   
423.
Possessing relatively high specific impulse and moderate thrust levels, solar thermal propulsion (STP) is a promising candidate in spacecraft propulsion system. However, the traditional solar thermal propulsion system suffers from thrust failure in the shadow area, which seriously affects its applicability. In this paper, we investigate feasibility of regenerative solar thermal propulsion system (RSTP) incorporating thermal energy storage, which can effectively overcome unmatched synchronous working time and illumination time. A numerical model for RSTP considering the whole energy transfer process from light concentrating, heat storage, to thrust generation is built, which is verified by experiment measurements with relative errors less than 15 %. The result shows that the maximum time to complete heat storage is about 4000 s, which is within the illumination time for low Earth orbit. In the solar eclipse region, the thrust (Ft) and the specific impulse (Isp) of the system increase with the propellant flow rate, which can reach about 2 N and 690 s, respectively. What’s more, the system can operate for around 100 s continuously at the maximum thrust in the shadow area. This work provides alternative approaches for microsatellite propulsion with high specific impulse, high thrust, and continuous operation despite presence of solar eclipse.  相似文献   
424.
50 kW级高功率霍尔推力器放电通道数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
高功率霍尔推力器兼顾了比冲高、推力大、寿命长等特点。为了提高设计效率并考察热负荷问题,以50 kW级霍尔推力器为对象,采用单元粒子法(PIC)/蒙特卡罗碰撞模型(MCC)/直接模拟蒙特卡罗碰撞模型(DSMC)混合算法,建立二维对称计算模型。基于准电中性假设、中性原子考虑为背景气体,计算得到标准工况下(功率50 kW,流量86.4 mg/s)推力为2.2 N,比冲为2 598 s,与同类推力器实验结果对比,误差分别为5.18%和3.35%。在此基础上,考察了多种工况下(工作电压400~600 V,工质流量69.12~103.68 mg/s)放电通道内离子数密度、离子轴向运动速度、电子温度分布等参数。结果表明:增大工作电压会增强粒子间相互作用及离子加速喷出效果,流量调节影响电子温度和离子数密度分布;从推力器性能方面来看,增大工作电压,推力比冲随之增大,流量增大、推力增大,推力器的热损失功率占比达到15.94%。研究结果为高功率霍尔推力器的设计和实验提供了一定的参考依据。  相似文献   
425.
为探究含铝固体燃料冲压发动机的燃烧特性和工作性能,基于纳米铝颗粒和端羟基聚丁二烯(HTPB)的混合固体燃料,采用雷诺转捩模型、颗粒表面反应模型和涡概念耗散模型,建立了二维两相湍流燃烧模型;数值计算分析了含铝固体燃料冲压发动机内流场,以及不同含铝质量分数和粒径下的燃面退移速率、推力与比冲。结果表明:发动机的进气条件对颗粒相的燃烧与运动起主导作用;与纯HTPB推进剂相比,添加质量分数为5%的铝颗粒能够提高补燃室压强和温度,增大燃烧室内高温区面积,可使推进剂平均燃面退移速率提高18.53%,发动机推力提高21.37%,密度比冲提高2.38%,适当增加铝颗粒含量或减小粒径,对提高推进剂燃面退移速率、发动机推力和密度比冲具有积极作用。  相似文献   
426.
谭睿  于博  王平阳 《上海航天》2023,40(4):128-135
随着航天技术的发展,新型嵌套式霍尔推进器解决了传统单通道霍尔推进器功率不高和运行模式单一的问题,在航天领域发挥着愈加重要的作用。为了研究质量流量和磁场强度对嵌套型霍尔推进器性能的影响,本文采用PIC-DSMC算法,追踪和模拟等离子体粒子在电磁场作用下的运动和碰撞过程,对羽流场进行仿真。模拟结果表明:质量流量和磁场强度对推力贡献成正相关,推进器的比冲和羽流发散角则会受到双通道的综合影响。适当增大内通道的运行功率能够提升推进器整体效率。本文的模拟结果初步证明了嵌套霍尔推进器运行工况和磁场设计的可行性,并进一步为推进器的实验和优化提供了数据支持。  相似文献   
427.
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms. The connection between the quantum of energy outflux from the upper atmosphere into space in terms of NO IRF and the duration of storms is established. The NO radiative cooling, and the closely correlated depletion in O/N2 ratio are controlled by the Joule heating intensity (proxied by AE-index). The collisional excitation rate of NO, calculated using the modelled datasets of WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), correlates well with the observed pattern of radiative emission by NO. Observational datasets from TIMED/GUVI (Global Ultra-Violet Imager) and MIT Haystack observatory madrigal GNSS (Global navigation satellite system) total electron content (TEC) database shows that the TEC and O/N2 enhancement in low-mid northern hemispheric latitudes are mainly controlled by the z-component of Interplanetary magnetic field (IMF-Bz). The penetration of eastward electric field during the storm events is found to be responsible for the overall enhancement of TEC. The contribution of enhanced day-side TEC in observed variation of O/N2 ratio by GUVI is also reported. It is also seen that during substorms related events the night-time polar region experiences more cooling due to NO than the daytime polar region. The connections between the mid- and low-latitude enhancement in NO IRF with the propagation of LSTIDs (Large-scale traveling ionospheric disturbances) in combination with the O/N2 variability, and the altitudinal variation in NO flux with the progression of the storm is also investigated. This study presents the evidence on the role of diffusion processes in the large scale enhancement of NO in the mesospheric altitudes.  相似文献   
428.
Accurate assessment of total suspended solids (TSS) is one of the most important parameters for the management of health of aquatic ecosystem. Due to the limitation of traditional TSS measurement methods, recently developed remote sensing based algorithm (Wen algorithm) has been used to measure the TSS concentration in a Himalayan foothill river like Raidak. Additionally, to examine the spatiotemporal characteristics of total suspended solids (TSS), total three consecutive years (2019, 2020 and 2021) along with different seasons have been selected. The Nechad algorithm has been used to validate the recalibrated algorithm. The result also indicates that Wen algorithm is also highly consistent with the Nechad algorithm (R2 value is greater than 0.90). It is also estimated that the concentration of TSS becomes very high particularly in monsoon months (242 mg/l, 270 mg/l and 246 mg/l for the year 2019, 2020 and 2021). The Raidak river catchment is located in the foothill zone of the lofty Himalayan range and the region is totally influenced by Indian summer monsoon. In the Raidak river course, the seasonal sediment flux is highly correlated with rainfall, stream flow, cross sectional area and high anthropogenic stress. The NDTI (Normalize Difference Turbidity Index) value (Turbidity) is greater in monsoon season than pre and post monsoonal periods (0.035, 0.0851 and 0.0201 for the years 2019, 2020 and 2021 respectively). ANOVA result shows a significant difference among the TSS values in different years (p=<0.05).  相似文献   
429.
The European Stratospheric Balloon Observatory (ESBO) initiative aims at simplifying the access to stratospheric balloon missions. We plan to provide platforms and support with instrument design in order to support scientists. During the design process, the inevitable question of qualification for the harsh flight conditions arises. Unfortunately, there is no existing standard for qualification of stratospheric ballooning hardware. Thus, we developed a qualification procedure for use within ESBO and similar projects.In this paper, we present our analysis of the environmental conditions in the stratosphere. While conditions at typical balloon float altitudes are similar to the space environment, there are also some relevant differences. For example, the thermal environment is dominated by radiation and thermal conduction, but the remaining atmosphere still supports a certain amount of convection. The remaining atmospheric pressure in the stratosphere also leads to reduced arcing distances. Vibrational loads are far less than for space missions, but quasi-static or shock loads may occur. The criticality of radiation increases with mission duration.Based on the environmental conditions, we present the qualification procedures for ESBO, which are based on the European Cooperation for Space Standardization (ECSS) standards for space systems. Overtesting against too high requirements leads to overengineering, driving mission cost and mitigating the advantages of balloons over space missions. Therefore, we modified the ECSS standards to fit typical scientific ballooning missions over several days at altitudes up to 40 km. Furthermore, we analyzed design rules for space systems with regard to their relevance for scientific ballooning, including material and component selection. We present the experience from the hardware qualification process for the ESBO prototype STUDIO (Stratospheric UV Demonstrator of an Imaging Observatory). Even though boundary conditions are different for each individual mission, we aimed for a broader approach: We investigated more general requirements for scientific ballooning missions to support future flights.  相似文献   
430.
A better understanding of the ionosphere through accurate mathematical models is no doubt a crucial element. This study focuses on the challenging problem of building a model representing the complex structure of the midlatitude ionosphere. Previous studies have shown that a regional planar model is suitable in representing the total electron content (TEC) trend in the midlatitude ionosphere in both hemispheres. In this study, the planar trend model for 12 non-overlapping northern hemisphere regions in three groups of geographically near 4 regions is further investigated under different levels of solar activity; low, moderate and high. To that end, the coefficients of the model are estimated in the least squares sense using total electron content values from global ionospheric maps (GIMs) for the years 2009, 2012 and 2014. Subsequently, these coefficients are used to reconstruct estimated TEC maps which are then compared with actual GIM-TEC by investigating their difference in normalized L2 norm squared sense. The regional planar trend model provides a particularly successful representation in the years 2012 and 2014 for which the solar activity level is the dominant factor determining the TEC trend. Under low solar activity conditions of 2009, other factors such as ocean currents, temperature variations and meteorological phenomena are suspected to have a considerable effect in some regions depending on their geographic location and on seasonal trends in those regions. As an example, studies show that under the influence of the Pacific Decadal Oscillation (PDO) and Siberian High (SH), a significant cooling trend between 2004 and 2018 in autumn is observed in Eurasia, which, in conjunction with the low solar activity levels, may be related to the deviations from the actual GIM-TEC in 2009 in these regions. As solar radiation increases, however, such bottom-side forcings are masked in 2012 and 2014 and these deviations are no longer observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号