首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   75篇
  国内免费   75篇
航空   303篇
航天技术   77篇
综合类   35篇
航天   60篇
  2024年   3篇
  2023年   13篇
  2022年   20篇
  2021年   29篇
  2020年   25篇
  2019年   22篇
  2018年   19篇
  2017年   18篇
  2016年   28篇
  2015年   16篇
  2014年   30篇
  2013年   22篇
  2012年   19篇
  2011年   22篇
  2010年   16篇
  2009年   18篇
  2008年   20篇
  2007年   27篇
  2006年   13篇
  2005年   13篇
  2004年   12篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   10篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1993年   6篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1984年   4篇
排序方式: 共有475条查询结果,搜索用时 46 毫秒
471.
《中国航空学报》2023,36(8):395-407
The wear condition of the piston/cylinder pair is crucial to the performance and reliability of the axial piston pump. The hard piston surface, the soft cylinder bore surface, and the interface oil film affects each other during the wear process. Specifically, in the mixed lubrication region, the geometry of the hard piston surface asperity directly affects the wear of soft cylinder bore surface, while the asperities may deform or even degrade when penetrating and sliding against the cylinder bore. So far, there is no suitable method to simulate their coupled evolution. This paper proposed a wear process simulation model considering the real-time interaction between the elasto-plastic deformation of the piston surface asperity, the wear contour of the cylinder bore, and the lubrication condition of the interface. An offline library of the elasto-plastic constitutive behavior of the asperity based on the finite element method (FEM) is established as a part of the simulation model to precisely analyze the deformation and degradation of the asperity and quickly invoke them in the numerical wear process simulation. The simulation and experimental results show that the piston asperity and the cylinder bore contour converge to a steady state after running-in for about 0.5 h. The distribution of the simulated asperity degradation and wear depth is also verified by the experiment.  相似文献   
472.
The Dongting Lake Basin is an important hydrological regulation and flood storage area in the Yangtze River Basin, which plays an important role in maintaining regional ecological security. The watershed vegetation and its carbon sequestration capacity have changed dramatically due to climate change and human activities in the last two decades. In this paper, the monthly and annual vegetation net primary productivity (NPP) of the Dongting Lake basin during 2000 to 2020 was firstly estimated using the improved Carnegie-Ames-Stanford Approach (CASA) model. Then the multi-year NPP change trend and its significance were analyzed based on Theil-Sen median and Mann-Kendall method. Subsequently, the Hurst index was used to simulate the vegetation NPP persistence in the study area. Finally, the driving mechanisms of vegetation NPP changes in the study area were explored using partial correlation coefficients and residual analysis. The results demonstrated that: 1) The annual average NPP in the basin showed a fluctuating and increasing trend from 273.54 to 718.30 g C/m2·yr1 during 2000 to 2020, and except for autumn, all seasons (spring, summer, winter) and annual NPP series showed an upward trend. The spatial distribution of vegetation NPP is characterized by an asymmetrical horseshoe shape in general, with high values in the west, south and east parts, and low values in the Lake area; 2) During the study years, about 84.38 % of the basin area showed a significant and extremely significant increase of NPP; 3) The future trend of vegetation NPP in the basin shows that the area of decrease (22.79 %) is more than the area of increase (11.35 %). The Chang-Zhu-Tan urban agglomeration will generally show a continuous and extremely significant reduction trend, while parts of Dongting Lake will show a continuous and extremely significant increase trend; 4) The correlation between solar radiation and NPP is stronger than the other two meteorological factors (precipitation and temperature). Temperature has a significant inhibitory effect on NPP, solar radiation has a significant promoting effect on NPP, and the effect of precipitation on NPP was relatively complicated. The relative importance of meteorological factors on vegetation NPP was ranked as follows: solar radiation > precipitation > temperature. The impacts of both climate change and human activities on NPP changes showed great spatial variability, and the positive contributions (89.81 % for climate change and 82.87 % for human activities) were both greater than the negative contributions.  相似文献   
473.
为了满足变循环发动机风车起动性能仿真的需求,建立了变循环发动机部件级风车起动模型。针对旋转部件等熵效率不连续的问题,提出使用换算扭矩代替等熵效率的方法,给出了旋转部件全转速特性拓展方法。提出了考虑点火及燃烧稳定性的燃烧室稳定性模型。考虑了变循环发动机的8个可调参数,采用差分进化算法对变循环发动机的风车及风车起动性能进行了优化。结果表明,风车状态时,变循环发动机在单外涵模态具有更高的核心机物理转速,有利于点火之后核心机物理转速快速趋于其慢车值。单外涵模态时,变循环发动机在风车状态的可调参数仅与飞行马赫数有关,为了保持较高的核心机物理转速,后涵道引射器外涵面积需随飞行马赫数的增加而减少,其余参数皆固定在其最佳值。飞行高度6km、马赫数0.8时,变循环发动机在单外涵模态下的风车起动时间为1.4s。风车起动过程中燃油流量的增长主要受燃烧稳定性所约束。通过对可调参数的优化,可使变循环发动机在风车起动过程中的关键性能参数最大程度的逼近其限制值,从而减少风车起动时间。  相似文献   
474.
本文以Al-50wt%Si高硅铝合金为研究对象,采用单因素试验方法进行无涂层硬质合金刀具干式铣削试验,分析切削参数对刀具磨损和表面粗糙度的影响。结果表明:表面粗糙度受每齿进给量的影响最显著,随每齿进给量的增加而增加,当每齿进给量从0.07 mm/z增加到0.16 mm/z时,表面粗糙度增加2倍;刀具磨损受切削速度的影响最显著,随切削速度的增加而增加,当切削速度从140 m/min增加到260 m/min时,切削总长度降低3倍,而刀具后刀面磨损量仅是260 m/min速度下的0.8倍;表面粗糙度随刀具磨损的增加呈现先增加后降低的变化趋势,切削长度从350 mm增加到1 750 mm,刀具磨损量平均增加4.5倍,而表面粗糙度却下降2倍;硬质合金刀具主要的磨损形式为磨粒磨损、崩刃。  相似文献   
475.
《中国航空学报》2022,35(8):280-294
Electrolyte jet machining (EJM) is a promising method for shaping titanium alloys due to its lack of tool wear, thermal and residual stress, and cracks and burrs. Recently, macro-EJM has attracted increasing attention for its high efficiency in machining wide grooves or planes. However, macro-EJM generates large amounts of electrolytic products, thereby increasing the difficulty of rapid product removal with a standard tool and reducing the surface quality. Therefore, for enhanced product transport, a novel tool with a back inclined end face was proposed for macro-EJM of TC4 titanium alloy. For comparison, also proposed were ones with a standard flat end face, a front inclined end face, and both front and back inclined end faces. The flow field distributions of all proposed tools were simulated numerically, and experiments were also conducted to validate the simulation results. The results show that one with a 5° back inclined end face can decrease the low-velocity flow zone in the machining area and increase the high-velocity flow zone at the back end of tool, thereby promoting rapid product removal. A relatively smooth bright-white groove surface was obtained. The same tool also resulted in the highest machining depth and material removal rate among the tested ones. In addition, rapid product removal was beneficial to the subsequent processing. Because of its rapid product removal, the machining depth and material removal rate during deep groove machining using the tool with a 5° back inclined end face were respectively 7% and 14% higher than those produced using a standard one. Moreover, the lowest bottom height difference of 0.027 mm can be obtained when the step-over value was 8.2 mm, and a plane with a depth of 0.285 mm and a bottom height difference of 0.03 mm was fabricated using the tool with a 5° back inclined end face.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号