首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   122篇
  国内免费   54篇
航空   289篇
航天技术   113篇
综合类   18篇
航天   67篇
  2024年   3篇
  2023年   22篇
  2022年   30篇
  2021年   34篇
  2020年   23篇
  2019年   22篇
  2018年   9篇
  2017年   24篇
  2016年   25篇
  2015年   9篇
  2014年   25篇
  2013年   15篇
  2012年   17篇
  2011年   18篇
  2010年   14篇
  2009年   9篇
  2008年   8篇
  2007年   16篇
  2006年   16篇
  2005年   5篇
  2004年   12篇
  2003年   12篇
  2002年   5篇
  2001年   11篇
  2000年   14篇
  1999年   13篇
  1998年   12篇
  1997年   14篇
  1996年   5篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1992年   5篇
  1991年   1篇
  1990年   9篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
461.
《中国航空学报》2023,36(4):523-537
Electrochemical machining (ECM) has emerged as an important option for manufacturing the blisk. The inter-electrode gap (IEG) distribution is an essential parameter for the blisk precise shaping process in ECM, as it affects the process stability, profile accuracy and surface quality. Larger IEG leads to a poor localization effect and has an adverse influence on the machining accuracy and surface quality of blisk. To achieve micro-IEG (<50 μm) blisk finishing machining, this work puts forward a novel variable-parameters blisk ECM strategy based on the synchronous coupling mode of micro-vibration amplitude and small pulse duration. The modelling and simulation of the blisk micro-IEG machining have been carried out. Exploratory experiments of variable-parameters blisk ECM were carried out. The results illustrated that the IEG width reduced with the progress of variable parameter process. The IEG width of the blade’s concave part and convex part could be successfully controlled to within 30 μm and 21 μm, respectively. The profile deviation for the blade’s concave surface and convex surface are 49 μm and 35 μm, while the surface roughness reaches Ra = 0.149 μm and Ra = 0.196 μm, respectively. The profile accuracy of the blisk leading/trailing edges was limited to within 91 μm. Compared with the currently-established process, the profile accuracy of the blade’s concave and convex profiles was improved by 50.5 % and 53.3 %, respectively. The surface quality was improved by 53.2 % and 50.9 %, respectively. Additionally, the machined surface was covered with small corrosion pits and weak attacks of the grain boundary due to selective dissolution. Some electrolytic products were dispersed on the machined surface, and their components were mainly composed of the carbide and oxide products of Ti and Nb elements. The results indicate that the variable-parameters strategy is effective for achieving a tiny IEG in blisk ECM, which can be used in engineering practice.  相似文献   
462.
《中国航空学报》2023,36(7):129-146
In the quest for decreasing fuel consumption and resulting gas emissions in the aeronautic sector, lightweight materials such as Carbon Fiber Reinforced Polymers (CFRPs) and Ti-6Al-4V alloys are being used. These materials, with excellent weight-to-strength ratios, are widely used for structural applications in aircraft manufacturing. To date, several studies have been published showing that the use of metalworking fluids (MWFs), special tool geometries, or advanced machining techniques is required to ensure a surface quality that meets aerospace component standards. Conventional MWFs pose a number of environmental and worker health hazards and also degrade the mechanical properties of CFRPs due to water absorption in the composite. Therefore, a transition to more environmentally friendly cooling/lubrication techniques that prevent moisture problems in the composite is needed. This research shows that lubricated LCO2 is a viable option to improve the quality of drilled CFRP and titanium aerospace components compared to dry machining, while maintaining clean work areas. The results show that the best combination of tool geometry and cooling conditions for machining both materials is drilling with Brad point drills and lubricated LCO2. Drilling under these conditions resulted in a 90 % improvement in fiber pull-out volume compared to dry machined CFRP holes. In addition, a 33 % reduction in burr height and a 15 % improvement in surface roughness were observed compared to dry drilling of titanium.  相似文献   
463.
Ultrasonic surface rolling process(USRP) is one of the effective mechanical surface enhancement techniques. During the USRP, unstable static force will easily do harm to the surface quality. In order to achieve a higher surface quality on the part with a curved surface, an active and passive compliant USRP system has been developed. The compliant USRP tool can produce the natural obedience deformation along the part surface. Force control based on the fuzzy Proportional-integral-derivative(PID) ...  相似文献   
464.
《中国航空学报》2023,36(3):471-481
The thread rolling process has been widely applied to manufacture high-performance thread parts. In this process, the evolutions of surface and subsurface are frequently introduced, which affect the working performance of manufactured parts. In this study, an axial-infeed thread rolling process (ATRP) is employed, and the macro-meso surface characteristics under different lubrications and operating conditions are investigated. Moreover, the distributions of microstructure and hardness on the subsurface of formed tooth are analyzed in detail, along with the study of stress state and yield strength change. It is found that the MoS2 grease is more effective in reducing the surface roughness and defects than the lubrication oil and water-base graphite during the ATRP process. Increasing rolling speed improves the quality of surface morphology and can reduce the surface roughness. On the subsurface of bottom and flank, intensive shear stress occurs in a narrow region, resulting in the elongation and refinement of the grains and increasing the low angle grain boundary fraction. Based on the grain size and plastic strain, the yield strength is predicted. The maximum yield strength and hardness on the bottom of formed tooth are improved by 41.2% and 39.4%, respectively.  相似文献   
465.
High-precision turning(HPT) is a main processing method for manufacturing rotary high-precision components, especially for metallic parts. However, the generated vibration between tool tip and workpiece during turning may seriously deteriorate the surface integrity. Therefore,exploring the effect of vibration on turning surface morphology and quality of copper parts using3D surface topography regeneration model is crucial for predicting HPT performance. This developed model can update the machin...  相似文献   
466.
为提高铣削7475铝合金表面粗糙度()的预测准确性和便捷性,本文基于天鹰优化器算法(AO)对最小二乘向量机(LSSVM)进行优化,以4个铣削参数作为输入值,作为输出值构建铣削铝合金预测模型,通过与粒子群(PSO)优化最小二乘支持向量机(LSSVM)和LSSVM 两种算法进行对比,采用灰色关联对铣削参数与表面粗糙度之间的相关性进行分析并通过GUI界面搭建预测系统。结果表明:基于AO-LSSVM的预测模型的预测误差为4.287 6%,拟合优度达到0.938 64,优于其他算法;每齿进给量与的相关性最大,灰色关联度值为0.764;通过GUI预测应用系统能实现高效、便捷、准确地预测值。  相似文献   
467.
《中国航空学报》2023,36(5):239-249
The velocity slip and temperature jump for a two-dimensional rough plate under hypersonic conditions were analyzed using the Direct Simulation Monte Carlo (DSMC) method. Surface roughness was explicitly modeled by introducing various structures on the flat plate. The influences of relative roughness height, which involves the roughness height, roughness spacing, incoming velocity, and the degree of rarefaction, were analyzed and discussed. It is found that with the increase of the relative roughness height, the jump temperature increases, while the slip velocity decreases gradually. The effects of surface roughness on the slip coefficients can be attributed to the change of accommodation coefficients. A new slip model for rough surfaces was established in this paper, which accounts for the coupling effects of gas rarefaction and surface roughness, without the effort to model the surface roughness explicitly. The nitrogen flows in the microchannel, and flows over a blunt cone and an axisymmetric bi-conic body, were simulated under the modified and conventional slip boundary conditions, respectively. The numerical solutions were validated with experimental data. It can be safely concluded that compared with the traditional first-order slip boundary conditions, the modified slip model improves the accuracy of macroscopic properties, especially the heat transfer coefficient.  相似文献   
468.
硅铝合金是电子封装和汽车领域广泛应用的一类重要材料.硅铝合金在切削加工中存在加工表面质量差和刀具磨损严重等问题.研究硅铝合金在切削加工过程中产生的表面缺陷和切削刀具适配性,是提升硅铝合金的可切削加工质量的技术关键.本文针对切削加工硅铝合金表面缺陷的形成机理、控制方法以及刀具材料选择及磨损机理进行了系统的阐述,并对该领域...  相似文献   
469.
卫星导航有源接收天线的噪声温度是导航接收系统的关键技术指标之一。针对卫星导航有源天线总体噪声温度无法测量的问题,研制了两台口面型噪声源,口面噪声源主要由辐射体、辐射体物理温度控制和温度测量仪等组成。两个口面噪声源在L和S波段分别提供高低温标准噪声温度,采用Y系数测量方法测量有源接收天线的总体天线噪声温度。测量了某卫星导航有源天线的总噪声温度,在(1.19~1.29) GHz的频率范围内,中心频率1.24 GHz上噪声温度测量结果为206 K,但是在1.266 GHz频率点上噪声温度测量大于4 000 K,说明天线与滤波器之间、滤波器与放大器之间存在设计问题或其它问题,体现出测量有源天线噪声温度的必要性。  相似文献   
470.
《中国航空学报》2022,35(8):295-303
Flow field is a crucial factor to influence the stability and surface quality in the electrochemical machining (ECM) of blisks. A four-way flow mode was proposed to eliminate mixing regions of electrolyte at the leading and tailing edges. Two flow field models were described separately in this report: a W-shaped flow mode and a four-way flow mode. The flow field was analyzed through a finite element method. The results showed that, in comparison with the W-shaped flow mode, the distribution of electrolyte flow was more uniformed and the mixed region in the flow channel was improved. The pressure of the leading and tailing edges inlets was optimized, and optimal pressure of 0.6 MPa was determined. In addition, verification experiments were performed, and the results showed that the stability, efficiency, and quality of the profiles of the blisk blade manufactured by ECM were enhanced in the new flow mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号