首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2016篇
  免费   1024篇
  国内免费   204篇
航空   1783篇
航天技术   252篇
综合类   133篇
航天   1076篇
  2024年   8篇
  2023年   19篇
  2022年   60篇
  2021年   56篇
  2020年   63篇
  2019年   66篇
  2018年   48篇
  2017年   69篇
  2016年   65篇
  2015年   70篇
  2014年   100篇
  2013年   87篇
  2012年   106篇
  2011年   131篇
  2010年   93篇
  2009年   109篇
  2008年   137篇
  2007年   130篇
  2006年   120篇
  2005年   116篇
  2004年   114篇
  2003年   128篇
  2002年   129篇
  2001年   117篇
  2000年   113篇
  1999年   141篇
  1998年   125篇
  1997年   128篇
  1996年   118篇
  1995年   102篇
  1994年   78篇
  1993年   74篇
  1992年   54篇
  1991年   41篇
  1990年   39篇
  1989年   34篇
  1988年   41篇
  1987年   14篇
  1986年   1篇
排序方式: 共有3244条查询结果,搜索用时 328 毫秒
561.
多普勒调频率是SAR方位向压缩的关键参数之一. 调频率的失配会带来严重的方位向散焦, 从而影响成像质量. 基于减灾、防灾目的, 需要对SAR数据快速成像, 从而相应要求对多普勒调频率进行快速估计处理. 根据多普勒调频率快速估计需求, 提出了一种基于轨道参数法和Map Drift算法估计多普勒调频率的综合反演算法, 利用多普勒调频率与距离的关系, 简化整个估计流程, 从而提高估计速度. 同时给出了一种块数据筛选的方法, 用于选择综合反演法中所采用的块数据. 实验结果表明, 综合反演法能够在满足成像质量要求的基础上, 快速估计出多普勒调频率.   相似文献   
562.
在微小卫星再生伪码测距中,码同步环的跟踪性能是决定测距精度的关键,而数字处  相似文献   
563.
NEPE推进剂/衬层粘接界面细观力学性能/结构研究   总被引:12,自引:0,他引:12  
研究了不同组成的NEPE推进剂/衬层粘接界面细观力学性能和结构的差异,以及对应粘接界面贮存过程中粘接性能和破坏方式的变化规律,探索了粘接界面的细观力学性能、结构与破坏方式的内在关联,初步提出NEPE推进剂/衬层粘接界面失效模式。试验结果表明,粘接界面细观力学性能、结构与界面粘接质量相关,是影响界面失效模式的主要因素。粘接界面具有高模量、高硬度层,N元素含量高且有明显梯度变化时,粘接质量较好,发生内聚破坏,反之发生界面破坏或混合破坏;老化过程中,粘接界面的模量和硬度降低、N元素的含量明显降低决定粘接界面依次发生内聚破坏、混合破坏和界面破坏。  相似文献   
564.
刘任洋  李庆民  李华  熊宏锦 《航空学报》2016,37(10):3131-3139
针对任务期间普遍存在的故障件报废和备件多指标约束问题,提出了多层级装备的可用度近似评估方法及携行备件方案优化方法。首先通过忽略维修时间将考虑报废率的多层级可修件转化为单层级消耗件,进而利用伽马分布的可加性建立装备可用度评估模型。在此基础上以装备可用度、备件总质量为约束指标,以备件总体积最低为目标构建多约束备件优化模型。模型求解过程中引入拉格朗日因子,并采用边际算法对约束因子进行动态调整。算例中通过与仿真结果的对比、分析得出:当维修时间取值在部件等效平均寿命的一半以内时,提出的近似方法合理可行,平均误差小于5%。  相似文献   
565.
为了改善会切磁场推力器在低功率下对中低等流量变化的不适应性,采用了一种渐扩的变截面通道设计来提升推力器中低等流量下的性能,对比了两种等截面通道与一种渐扩通道在中低等流量下的性能。虽然渐扩通道与小直径的等截面通道相比,会略微降低通道内的原子密度,但渐扩通道由于减小了出口离子能量损失,同时增大磁镜比促进电离,从而能够提升推力器在同等推力水平下的效率。而大直径等截面通道和小直径等截面通道分别由于原子密度过低及壁面损失较大,性能均不如渐扩通道。因此,渐扩型变截面通道在中低等流量变化范围内具有更优的性能,这对推力器性能的进一步优化具有重要意义。  相似文献   
566.
目前基于高精度陀螺导航的旋转调制技术研究及应用已相当成熟,为实现低成本、低精度微机电系统(MicroelectromechanicalSystems,MEMS)陀螺的高精度应用,文章引入旋转调制技术。对旋转调制前后导航误差进行了理论分析和仿真,对比了相同条件下对不同精度陀螺的调制效果,分析了影响陀螺误差调制的因素。仿真结果表明,相同条件下低精度MEMS陀螺的旋转调制效果比高精度陀螺更加明显,在100s内导航误差降低了30%以上。另外,对旋转导航误差的分析表明,研制高精度旋转调制转台是提高MEMS陀螺旋转调制精度的关键技术。  相似文献   
567.
复合材料层合板机械连接修理拉伸性能   总被引:1,自引:0,他引:1  
带损伤孔的复合材料层合板拉伸强度会降低约55%,需要对其进行修理以恢复力学性能、满足使用要求。针对带圆形损伤孔的复合材料层合板设计了机械连接修理方案,通过轴向拉伸试验评估其修理效果。根据试验条件建立了有限元模型,分析不同的修理方案对破坏模式、破坏载荷、应力分布、钉载分配等产生的影响。试验及有限元分析(FEA)均表明,修理后的复合材料层合板,其强度恢复率达到55%~60%左右,应力集中部位主要在修理区域最外侧的钉孔旁,最终破坏模式为母板沿修理区域最外侧一排钉孔断裂。使用双面修理、增加螺栓排数、采用金属补片、适当增加补片厚度,可减缓应力集中,改善钉载分配,提高结构强度恢复率。   相似文献   
568.
王凯  雷凡培  杨岸龙  杨宝娥  周立新 《航空学报》2021,42(6):124384-124384
为了研究径向孔形状对针栓式喷注器液膜下漏率的影响并对其进行准确预估,以径向圆孔液束的相对变形模型为基础,通过类比分析提出了矩形孔的相对变形理论模型,并考虑多喷注单元间相互影响和不同高宽比矩形孔的绕流侧边效应,首次建立了径向矩形孔的下漏率模型。通过试验及数值仿真对模型进行了验证分析,结果表明理论预估结果与数值仿真及试验结果吻合较好,也表明针对矩形孔建立的相对变形模型及下漏率模型具有较好的准确性。另外,研究表明矩形孔的下漏率除了与几何阻塞率、有效动量比及液膜厚度与液束孔宽度之比有关外,还与高宽比有关;3种不同高宽比情况下的下漏率均显著小于几何下漏率;同时下漏率随有效动量比增大而增大的趋势均较平缓。综合分析径向圆孔和3种不同高宽比矩形孔的结果发现,在径向孔横截面积及流量等工况参数完全相同的情况下,径向孔形状对下漏率有显著的影响,矩形孔的下漏率显著低于圆形孔的;矩形孔的高宽比越大,下漏率越大。实际应用中选择矩形孔更有利于控制下漏率,并可通过改变高宽比控制下漏率;同时在变工况过程中,矩形孔的下漏流量也会随着主路推进剂一起调节变化,保持下漏率变化不大,故具有较好的大范围变推力流量匹配特性。  相似文献   
569.
喷注器流强分布是除声学阻尼装置以外使液体火箭发动机稳定工作的重要措施,通过控制喷注流强分布使推进剂的燃烧尽量远离主要振型的波腹区,减少热声耦合振荡的能量源,从而达到抑制高频振荡的效果。因此,建立喷注流强分布与稳定性之间的综合分析模型,研究流强分布的不稳定性抑制特性具有重要实际意义。针对采用自击式喷嘴器、液滴蒸发作为燃烧速率控制过程的某自燃推进剂缩尺燃烧室高频纵向燃烧不稳定问题,近似采用蒸发速率峰值区代替集中燃烧释热区,引入燃烧室三维声学控制方程以考虑多喷嘴条件下燃烧响应空间分布,建立了针对喷注器流强分布条件下的高频纵向燃烧稳定性分析模型,并对喷注流强的稳定性抑制特性进行了分析,给出了不同分布流强下燃烧室一阶纵向信号的增长率变化规律。研究表明,喷注流强分布有利于燃烧室稳定,"驼峰区"喷注孔径的增大对改善高频纵向不稳定性更为显著,"驼峰区"流强增加30%,相应的增长率降低15%。  相似文献   
570.
 针对飞机结构部件在服役过程中存在的缝隙积水导致结构材料腐蚀的问题,通过研究腐蚀产物、形貌、失重、腐蚀速率、腐蚀损伤度以及积水溶液与暴露金属的面容比、pH值等的变化,探讨了300M超高强度钢在模拟积水环境中的腐蚀行为。结果表明,300M钢在模拟积水中的腐蚀是从点蚀开始,然后点蚀坑扩展合并,逐渐发展为全面腐蚀,其腐蚀失重和腐蚀损伤度随腐蚀时间的增加而增大,腐蚀损伤度则呈现出幂函数变化趋势;随腐蚀时间的延长,模拟积水环境中的pH值从初期的4.2升到5.2再下降到4.8~5.0,平均腐蚀速率也从0.289 g/(m2·h)线性减小到0.120 g/(m2·h);电化学交流阻抗结果表明随腐蚀时间的延长,容抗弧半径逐渐增大,说明腐蚀产物对基体起到一定的保护作用,这与腐蚀速率变化规律一致;另外,不同的面容比(腐蚀介质体积与300M钢暴露面积之比)对腐蚀过程的影响是:随面容比的增加,腐蚀失重与腐蚀速率均增大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号