首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1516篇
  免费   167篇
  国内免费   209篇
航空   974篇
航天技术   555篇
综合类   137篇
航天   226篇
  2024年   6篇
  2023年   42篇
  2022年   20篇
  2021年   42篇
  2020年   68篇
  2019年   61篇
  2018年   54篇
  2017年   80篇
  2016年   52篇
  2015年   62篇
  2014年   116篇
  2013年   83篇
  2012年   110篇
  2011年   122篇
  2010年   67篇
  2009年   110篇
  2008年   108篇
  2007年   102篇
  2006年   72篇
  2005年   63篇
  2004年   27篇
  2003年   33篇
  2002年   21篇
  2001年   65篇
  2000年   32篇
  1999年   18篇
  1998年   33篇
  1997年   8篇
  1996年   30篇
  1995年   22篇
  1994年   95篇
  1993年   26篇
  1992年   11篇
  1991年   8篇
  1990年   11篇
  1989年   5篇
  1988年   1篇
  1984年   6篇
排序方式: 共有1892条查询结果,搜索用时 743 毫秒
531.
In this work we examine the damping of Alfvén waves as a source of plasma heating in disks and magnetic funnels of young solar like stars, the T Tauri stars. We apply four different damping mechanisms in this study: viscous-resistive, collisional, nonlinear and turbulent, exploring a wide range of wave frequencies, from 10−5Ωi to 10−1Ωi (where Ωi is the ion-cyclotron frequency). The results show that Alfvénic heating can increase the ionization rate of accretion disks and elevate the temperature of magnetic funnels of T Tauri stars opening possibilities to explain some observational features of these objects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
532.
一种基于高斯混合模型粒子滤波的故障预测算法   总被引:2,自引:1,他引:2  
张磊  李行善  于劲松  代京 《航空学报》2009,30(2):319-324
针对一类故障预测问题提出了一种基于粒子滤波的故障预测算法。在算法的状态估计阶段,采用联合估计和粒子滤波同时估计对象系统故障演化模型状态和未知参数的后验分布。在算法的状态预测阶段,采用了两种不同的计算方法:一种方法是对状态变量当前时刻的后验分布进行迭代采样,从而获得未来时刻的状态变量的先验分布;另一种方法是采用数据驱动的方法预测未来一段时间内对象系统的量测信息,从而将未来时刻状态变量的先验分布的预测问题转化为一个求解后验分布的估计问题。采用高斯混合模型近似随机变量分布密度,从而将两种方法的计算结果在一个统一的预测框架之下进行有效交互,进一步提高了预测的准确性和可靠性。在算法的决策阶段,在获取的故障演化模型状态变量分布基础上,结合一定的故障判据近似计算出对象系统剩余寿命分布。故障预测仿真实验结果证明了所提算法的有效性。  相似文献   
533.
双环预混旋流低污染燃烧室数值研究   总被引:9,自引:10,他引:9  
利用Fluent软件计算双环预混旋流(TAPS)低污染燃烧室三维两相喷雾燃烧流场,研究两种燃烧室结构和两种喷油方式对流场与燃烧性能的影响,采用标准k-ε模型模拟湍流黏性,离散相模型追踪油珠运动轨迹,燃烧模型采用非预混平衡化学反应模型.计算结果表明:在进口条件不变情况下,改进燃烧室结构和喷油方式,能提高出口温度,同时可大幅降低出口污染物排放;在相同试验条件下,TAPS低污染燃烧室燃烧性能优于目前某在研发动机模型燃烧室.   相似文献   
534.
针对大海带东桥引桥断面和苏通长江公路大桥主梁断面,基于确定性涡方法进行静三分力系数及Strouhal数(St)雷诺数效应分析,采用粒子强度交换法(PSE)粘性扩散处理.和风洞试验值对比显示,数值计算结果有着合理的可信度.数值计算也显示雷诺数对这两种截面的静三分力系数及St影响不可以忽略;对苏通桥主梁断面在雷诺数在1×10~5和1×10~6范围时,St数受雷诺数影响很大,而这个范围内用试验的值来得到实桥的St数是非常困难的.  相似文献   
535.
某型航空发动机燃烧室排气污染物数值模拟   总被引:4,自引:0,他引:4  
以"热力"型NOx和"瞬发"型NOx及CO生成机理为基础,采用FLUENT6.3.26软件计算出在最大状态和地面慢车状态下,某型航空发动机环形燃烧室的温度场、速度场和浓度场.通过对计算结果的分析得出:火焰温度和燃料停留时间是影响燃烧室排气污染物排放量的主要因素.通过折衷考虑,可以得出降低燃烧室NOx和CO排放的有效措施,可为设计低污染燃烧室提供一定的数值依据.  相似文献   
536.
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component (Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays appears to be viable.  相似文献   
537.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   
538.
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore, one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances. In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value.  相似文献   
539.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
540.
A hybrid optimization algorithm for the time-domain identification of multivariable,state space model for aero-engine was presented in this paper.The optimization procedure runs particle swarm optimization (PSO) and least squares optimization (LSO) "in series".PSO starts from an initial population and searches for the optimum solution by updating generations.However,it can sometimes run into a suboptimal solution.Then LSO can start from the suboptimal solution of PSO,and get an optimum solution by conjugate gradient algorithm.The algorithm is suitable for the high-order multivariable system which has many parameters to be estimated in wide ranges.Hybrid optimization algorithm is applied to estimate the parameters of a 4-input 4-output state variable model (SVM) for aero-engine.The simulation results demonstrate the effectiveness of the proposed algorithm.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号