首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   35篇
  国内免费   20篇
航空   298篇
航天技术   306篇
综合类   26篇
航天   90篇
  2024年   1篇
  2023年   25篇
  2021年   6篇
  2020年   17篇
  2019年   17篇
  2018年   14篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   48篇
  2013年   19篇
  2012年   18篇
  2011年   25篇
  2010年   18篇
  2009年   35篇
  2008年   60篇
  2007年   60篇
  2006年   32篇
  2005年   31篇
  2004年   12篇
  2003年   18篇
  2002年   8篇
  2001年   44篇
  2000年   12篇
  1999年   13篇
  1998年   26篇
  1997年   2篇
  1996年   17篇
  1995年   15篇
  1994年   86篇
  1993年   17篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1984年   4篇
排序方式: 共有720条查询结果,搜索用时 31 毫秒
621.
The combination of recent observational and theoretical work has completed the catalog of the sources of heliospheric Pickup Ions (PUIs). These PUIs are the seed population for Anomalous Cosmic Rays (ACRs), which are accelerated to high energies at or beyond the Termination Shock (TS). For elements with high First Ionization Potentials (high-FIP atoms: e.g., H, He, Ne, etc.), the dominant source of PUIs and ACRs is from neutral atoms that drift into the heliosphere from the Local Interstellar Medium (LISM) and, prior to ionization, are influenced primarily by solar gravitation and radiation pressure (for H). After ionization, these interstellar ions are pickup up by the solar wind, swept out, and are either accelerated near the TS or beyond it. Elements with low first ionization potentials (low-FIP atoms: e.g., C, Si, Mg, Fe, etc.) are also observed as PUIs by Ulysses and as ACRs by Wind and Voyager. But the low-FIP composition of this additional component reveals a very different origin. Low-FIP interstellar atoms are predominantly ionized in the LISM and therefore excluded from the heliosphere by the solar wind. Remarkably, a low-FIP component of PUIs was hypothesized by Banks (J. Geophys. Res. 76, 4341, 1971) over twenty years prior to its direct detection by Ulysses/SWICS (Geiss et al., J. Geophys. Res. 100(23), 373, 1995) The leading concept for the generation of Inner Source PUIs involves an effective recycling of solar wind on grains near the Sun, as originally suggested by Banks. Voyager and Wind also observe low-FIP ACRs, and a grain-related source appears likely and necessary. Two concepts have been proposed to explain these low-FIP ACRs: the first concept involves the acceleration of the Inner Source of PUIs, and the second involves a so-called Outer Source of PUIs generated from solar wind interaction with the large population of grains in the Kuiper Belt. We review here the observational and theoretical work over the last decade that shows how solar wind and heliospheric grains interact to produce pickup ions, and, in turn, anomalous cosmic rays. The inner and outer sources of pickup ions and anomalous cosmic rays exemplify dusty plasma interactions that are fundamental throughout the cosmos for the production of energetic particles and the formation of stellar systems.  相似文献   
622.
We re-investigated the ‘spectro-temporal’ behavior of the source XTE J1859+226 in X-rays during its outburst phase in 1999, by analysing the RXTE PCA/HEXTE data in 2–150 keV spectral band. Detailed analysis shows that the source evolves through different spectral states during its entire outburst as indicated by the variation in the spectral and temporal characteristics. Although the evolution pattern of the outburst followed the typical q-shaped profile, we observed an absence of ‘canonical’ soft state and a weak presence of ‘secondary’ emission during the decay phase of the outburst. The broad-band spectra, modeled with high energy cutoff, shows that the fold-energy increases monotonically in the hard and hard-intermediate states followed by a random variation in the soft-intermediate state. We attempted to estimate the mass of the source based on the evolution of Quasi-Periodic Oscillation (QPO) frequencies during rising phase modeled with the propagating oscillatory shock solution, and from the correlation of photon index and QPO frequency. It is also observed that during multiple ejections (observed as radio flares) the QPO frequencies are not present in the power spectra and there is an absence of lag in the soft to hard photons. The disk flux increases along with a decrease in the high energy flux, implying the soft nature of the spectrum. These results are the ‘possible’ indication that the inner part of the disk (i.e., Comptonized corona), which could be responsible for the generation of QPO and for the non-thermal Comptonized component of the spectrum, is disrupted and the matter gets evacuated in the form of jet. We attempted to explain the complex behavior of ‘spectro-temporal’ properties of the source during the entire outburst and the nature of the disk-jet connection before, during and after the ejection events in the context of two different types of accreting flow material, in presence of magnetic field.  相似文献   
623.
The systematic investigation of the three components of the magnetic field is made on 6629 vector magnetograms obtained with the Solar Magnetic Field Telescope at Huairou Solar Observing Station over 18 years 1988–2005. The sign distribution of these values has been analyzed over the solar hemispheres and the solar activity cycle as follows:  相似文献   
624.
Coronal hole (CH) and the quiet Sun (QS) are considered to account for sources of fast and slow solar wind streams, respectively. The differences between the solar wind streams flowing out from the CH and the QS are thought to be related with different plasma generation and acceleration mechanisms in the respective source regions. Here we review recent studies on the solar wind origin in the CH and the QS, compare the possible flow geometries and magnetic structures in these two kinds of solar regions, and summarize the physics associated with two different origin scenarios.  相似文献   
625.
We review the structure and dynamics of the solar chromosphere with emphasis on the quiet Sun and properties that are relevant to element fractionation mechanisms. Attention is given to the chromospheric magnetic field, its connections to the photosphere, and to the dynamical evolution of the chromosphere. While some profound advances have been made in the “unmagnetized” chromosphere, our knowledge of the magnetically controlled chromosphere, more relevant for the discussion of element fractionation, is limited. Given the dynamic nature of the chromosphere and the poorly understood magnetic linkage to the corona, it is unlikely that we will soon know the detailed processes leading to FIP fractionation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
626.
According to the no-hair theorem, astrophysical black holes are uniquely described by their mass and spin. In this paper, we review a new framework for testing the no-hair hypothesis with observations in the electromagnetic spectrum. The approach is formulated in terms of a Kerr-like spacetime containing a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation from the Kerr metric quadrupole has to be zero. We show how upcoming VLBI imaging observations of Sgr A∗ as well as spectroscopic observations of iron lines from accreting black holes with IXO may lead to the first astrophysical test of the no-hair theorem.  相似文献   
627.
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.  相似文献   
628.
随着高校教育为区域经济发展服务意识的加强,各高校在商务英语的课程设置中加大了实践课程的比重。而有效的评估对实践教学的开展有着非常积极的作用,可以帮助师生有效监控实践过程和改进实践内容。因此,商务英语专业实践课程的评价研究已经成为促进商务英语专业建设的重要支撑。  相似文献   
629.
Nearby pulsars B0656+14 and Geminga were proposed in the literature as the main sources of cosmic-ray positrons observed near Earth above 10 GeV. B0656+14 has comparable distance from Earth, similar magnetic field and period of Geminga. However, observations in the R and I bands indicate the presence of a disk of approximately 10−4 M around B0656+14. Radio and pulsed γ-ray flux observations from this pulsar are also consistent with supernova fallback material and disk entering the light cylinder and partially quenching the development of electromagnetic showers in the magnetosphere. If this is the case, B0656+14 has unlikely given any contribution to e+ and e observed near Earth. Absolute flux measurements and the level of anisotropy in the high energy electron and positron arrival directions above 50 GeV will help in revealing if none, one of both nearby pulsars are sources of these particles observed near Earth.  相似文献   
630.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号